
AFRL-AFOSR-VA-TR-2015-0316

Robust Coordination of Autonomous Systems through Risk-sensitive, Model-based Programming and
Execution

Brian Williams
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Final Report
10/09/2015

DISTRIBUTION A: Distribution approved for public release.

AF Office Of Scientific Research (AFOSR)/ RTA2
Arlington, Virginia 22203

Air Force Research Laboratory

Air Force Materiel Command

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY)

30–09–2015

2. REPORT TYPE

Final

3. DATES COVERED (From — To)
01 September 2012 — 31 August 2015

4. TITLE AND SUBTITLE

Robust Coordination of Autonomous Systems through Risk-sensitive,
Model-based Programming and Execution

5a. CONTRACT NUMBER

FA9550–12–1–0348
5b. GRANT NUMBER

6926079
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Santana, Pedro; Fang, Cheng; Timmons, Eric; and Williams, Brian

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Model-based Embedded and Robotic Systems Group
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139–4301

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Office of Scientific Research (AFOSR)
801 N Randolph St., Rm. 732, Arlington VA 22203

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approval for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the authors and should not be construed as an
official U.S. Government position, policy or decision, unless so designated by other documentation.

14. ABSTRACT
Unlike their human counterparts, most autonomous systems to date are not effective at characterizing or bounding
mission risk. In this project, we enabled the development of risk-sensitive autonomous systems through three main
contributions: first, we introduced cRMPL, an extension of RMPL where one can specify acceptable risk levels for
different mission segments through the addition of chance constraints. Second, we extended the continuous planner, used
by our executive, to generate and adapt plans that maximize expected utility within the risk bounds specified by the
operators. Planning is performed through novel stochastic optimization algorithms that allocate user-specified risk to
actions and constraints according to the benefit received. We evaluated the generality of this risk-sensitive paradigm in
simulation and hardware, for autonomous air or space vehicles and humanoid logistics support robots. Benefits include
increased number and complexity of vehicle missions for a fixed operational cost, increased robot safety around humans;
a reduction in unacceptable mission failure or robot loss, and improved mission return within defined risk levels.
15. SUBJECT TERMS

keywords; associated words; other words

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

68

19a. NAME OF RESPONSIBLE PERSON
Prof. Brian C. Williams a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U
19b. TELEPHONE NUMBER (include area code)
(617) 253–3447

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18 DISTRIBUTION A: Distribution approved for public release.

Robust Coordination of Autonomous Systems
through Risk-sensitive, Model-based

Programming and Execution

Pedro Santana, Cheng Fang, Eric Timmons, and Brian Williams

Model-based Embedded and Robotic Systems Group
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
77 Massachusetts Avenue

Cambridge, MA 02139–4301

September 2015

DISTRIBUTION A: Distribution approved for public release.

Abstract

Unlike their human counterparts, most autonomous systems to date are not ef-
fective at characterizing or bounding mission risk. In this project, we enabled
the development of risk-sensitive autonomous systems through three main con-
tributions: first, we introduced cRMPL, an extension of RMPL where one can
specify acceptable risk levels for different mission segments through the addi-
tion of chance constraints. Second, we extended the continuous planner, used by
our executive, to generate and adapt plans that maximize expected utility within
the risk bounds specified by the operators. Planning is performed through novel
stochastic optimization algorithms that allocate user-specified risk to actions and
constraints according to the benefit received. We evaluated the generality of this
risk-sensitive paradigm in simulation and hardware, for autonomous air or space
vehicles and humanoid logistics support robots. Benefits include increased num-
ber and complexity of vehicle missions for a fixed operational cost, increased
robot safety around humans; a reduction in unacceptable mission failure or robot
loss, and improved mission return within defined risk levels.

DISTRIBUTION A: Distribution approved for public release.

DISTRIBUTION A: Distribution approved for public release.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

30–09–2015 Final 01 September 2012 — 31 August 2015

Robust Coordination of Autonomous Systems through Risk-sensitive,
Model-based Programming and Execution

FA9550–12–1–0348

6926079

Santana, Pedro; Fang, Cheng; Timmons, Eric; and Williams, Brian

Model-based Embedded and Robotic Systems Group
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
77 Massachusetts Avenue
Cambridge, MA 02139–4301

Air Force Office of Scientific Research (AFOSR)
801 N Randolph St., Rm. 732, Arlington VA 22203

Approval for public release; distribution is unlimited.

The views, opinions and/or findings contained in this report are those of the authors and should not be construed as an
official U.S. Government position, policy or decision, unless so designated by other documentation.

Unlike their human counterparts, most autonomous systems to date are not effective at characterizing or bounding
mission risk. In this project, we enabled the development of risk-sensitive autonomous systems through three main
contributions: first, we introduced cRMPL, an extension of RMPL where one can specify acceptable risk levels for
different mission segments through the addition of chance constraints. Second, we extended the continuous planner, used
by our executive, to generate and adapt plans that maximize expected utility within the risk bounds specified by the
operators. Planning is performed through novel stochastic optimization algorithms that allocate user-specified risk to
actions and constraints according to the benefit received. We evaluated the generality of this risk-sensitive paradigm in
simulation and hardware, for autonomous air or space vehicles and humanoid logistics support robots. Benefits include
increased number and complexity of vehicle missions for a fixed operational cost, increased robot safety around humans;
a reduction in unacceptable mission failure or robot loss, and improved mission return within defined risk levels.

keywords; associated words; other words

U U U UU 68
Prof. Brian C. Williams

(617) 253–3447

DISTRIBUTION A: Distribution approved for public release.

DISTRIBUTION A: Distribution approved for public release.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Desiderata . 2
1.3 Contributions . 4
1.4 Publications attributed to this project 5

2 Risk-sensitive model-based execution 7
2.1 Enterprise . 7
2.2 Enterprise deployments . 9

2.2.1 Crash course in autonomy 9
2.2.2 WHOI . 10

3 Programming risk-aware missions with cRMPL 12
3.1 Features of cRMPL . 13
3.2 Episodes . 13
3.3 Constraints in cRMPL . 14

3.3.1 Temporal constraints . 15
3.3.2 State constraints . 15
3.3.3 Chance constraints . 16

3.4 Composing episodes in cRMPL 16
3.4.1 Sequence composition 16
3.4.2 Parallel composition . 17
3.4.3 Choice composition . 17
3.4.4 Iteration composition . 18

3.5 Simple UAV scenario in cRMPL 19

4 Risk-bounded consistency of Probabilistic Temporal Plan Networks 21
4.1 Representing uncertainty in contingent temporal plans 22

iii

DISTRIBUTION A: Distribution approved for public release.

4.2 A conflict-directed approach to risk-bounded plan consistency . . 23

5 Model-based generation of risk-aware plans 27
5.1 The need for handling risk in planning domains with uncertainty . 28
5.2 Searching for optimal, risk-bounded cRMPL programs 29

6 Chance-constrained optimal scheduling 32
6.1 Problem Statement . 32
6.2 Intuition for solution method . 34

7 Experimental validation 36
7.1 Vehicle coordination under temporal uncertainty 36

7.1.1 Learning uncertain temporal duration models from data . . 38
7.2 Baxter cooperative manufacturing 42

7.2.1 Hybrid model learning in support of plan execution 46
7.3 Automatic risk-aware program generation with RAO∗ 47

8 Conclusions 50

Appendix A RAO∗: an Algorithm for Chance-Constrained POMDP’s 52

Bibliography 60

iv

DISTRIBUTION A: Distribution approved for public release.

Chapter 1

Introduction

1.1 Motivation

The trend in robotics is to transition from the traditional work-cell model, in which
robots work separate from human workers in highly controlled environments, to
a model in which the workspace is semi-structured, and humans and robots work
within the same space to perform tasks. Drivers for this transition include the
ability to operate robots with less set up, and the ability to perform tasks that are
best achieved by leveraging the complementary skills of humans and robots.

To enable humans and robots to work together safely and effectively, while
completing tasks under stringent temporal and safety requirements, we require
robots to posses a keen sensitivity and responsiveness to the uncertainty in their
environment. Current practice for ensuring task correctness and safety often re-
quires groups of engineers to reason over a very large number of potential de-
cisions and scenarios that might unfold during execution. Then, they manually
generate fault monitoring codes and contingency procedures that account for the
most likely scenarios, which is a challenging, time-consuming, and error-prone
process.

The number of possible execution scenarios in unstructured environments is
often overwhelming. For that reason, robot operators often respond by choosing to
employ conservative, very predictable robot task execution strategies. This is par-
ticularly true when robots are tasked with safety-critical missions, such as infor-
mation gathering in hostile environments (outer space, deep sea, war zones, etc.)
and operation in close proximity to humans. These conservative strategies tend to
be far from ideal in terms of accuracy and throughput, and are often brittle to dis-

1

DISTRIBUTION A: Distribution approved for public release.

turbances due to the execution strategy’s inability to adapt to the environment. For
instance, a common “safe” execution strategy consists of a precomputed sequence
of actions that are robust to the worst-case scenario. Such a scenario typically re-
quires humans and robots to work with complete separation, so as to limit the
impact of uncertain human behavior on robot actions.

The Artificial Intelligence community has been developing robotic task exe-
cution strategies that improve robustness using on-line executives. These execu-
tives choose actions based on the state of the world, and adapt to temporal delays
by performing dynamic scheduling. System managers, however, may resist the
adoption of these more dynamic methods, due to a lack of explicit guarantees of
correctness in terms of risk of task failure. In light of the latter, this project fo-
cused on the development of formal tools and algorithms allowing non-experts
to easily specify desired safe behavior at a natural level of abstraction; verify the
correctness of execution strategies and schedules in the presence of uncertainty;
and automatically generate such safe execution strategies and schedules from a
model description.

1.2 Desiderata
This project developed formal tools and algorithms that enable robots to execute
tasks while achieving high performance, defined by some measure of utility. In
addition to utility, these executives focus on enabling robots to achieve these tasks
within deadlines specified as temporal constraints, and enable robots to perform
these tasks while ensuring that hard safety guarantees are met. Achieving these
goals presents a number of challenges:

1. The robot should appropriately represent and reason about environment and
action uncertainty, and should use these models to predict the chances of
success of a plan of action. It should also be able to plan actions optimally,
while guaranteeing a probability of success specified by the user.

2. In order to be effective, the robot must be able to react to disturbances
quickly, in real time, so that compensating actions (if any exist) are not
delayed.

3. In order to manage environmental uncertainty, a robot must intelligently
combine sensing actions with state-changing actions, so that the state-changing
actions can be accomplished with an adequate probability of success.

2

DISTRIBUTION A: Distribution approved for public release.

We address these challenges using a model-based executive with three key ca-
pabilities. To address the first challenge (guaranteeing success probability), we
leverage our prior work on Probabilistic Temporal Plan Networks (pTPN) [1],
which extend Temporal Plan Networks with Uncertainty [2] by considering prob-
abilistic models for uncontrollable choices and allowing chance constraints to
be imposed on the violation of temporal constraints. We extend the chance-
constrained approach of [3] to high-level temporal activity planning with un-
certainty and sensing actions, and improve the robustness of our schedules by
modeling systems of temporal constraints as Probabilistic Simple Temporal Net-
works [4, 5], therefore allowing activity scheduling to explicitly take into account
the stochastic nature of the duration of various tasks.

To address the second challenge (achieving fast robustness to disturbances),
our planner generates pTPNs with sufficient choice nodes to provide flexibility
to anticipated uncontrollable events. The generated pTPN effectively encodes an
optimal control policy, in the form of a conditional plan, for the correct responses
to any combination of uncontrollable event outcomes. This allows the runtime
executive to interpret the plan (the pTPN) to quickly make optimal decisions, no
matter how the uncontrollable events turn out.

To address the third challenge (achieving adequate situation awareness), our
planner generates pTPNs that optimally combine sensing and state changing ac-
tions so that the overall situation awareness is adequate to achieve the goals, within
the success probability specified by the user. We leverage previously developed
planning capabilities, augmenting them with the capability of combining sensing
and state changing actions.

The goal of the project was to conduct basic research to create a prototype of
a deployable risk-sensitive intelligent system. While our theoretical contributions
were mission-enabling by allowing reasoning over probabilistic uncertainty, we
also ensured that the advances were translated to useful technology. We present
the high-level description of the desired characteristics which guided our efforts
as follows:

1. The system shall be risk-sensitive. Given the environment model and a
description of the actions and observations, the system will generate a plan
and schedule to meet all specifications with a guarantee on the probability
of success.

2. The system shall be scalable. The system will solve for a plan and sched-
ule within a time frame appropriate to the number of variables in the input
mission description.

3

DISTRIBUTION A: Distribution approved for public release.

3. The system shall have contingency plans. The system will solve for a nom-
inal plan, but also have back up strategies in the case of particularly large
deviations from what was expected.

4. The system shall be transferable across problem domains. The intelligent
system shall allow both operations level planning and support direct control
of hardware assets in a variety of problem scenarios, dealing with different
vehicles across different environments.

5. The system shall be easy to operate by non-expert users. The intelligent
system should allow the user to specify a set of desired outcomes and rea-
son over automatically instantiated actions. As the actions are no longer
hand-coded, it addresses the scalability issues which arise when describing
problems with a large number of actions, and does not require the user to
have prior knowledge of how each action affects the environment.

1.3 Contributions
An overview of Enterprise, the model-based programming and execution archi-
tecture implementing our risk-sensitive intelligent system, is given in Chapter 2.
We describe the flow of information and control, from high-level planning and
scheduling to low-level dispatch and execution layers, and provide evidence of
Enterprise’s ease-of-use by non-experts, mission-enabling features, and transfer-
ability across domains by detailing how it has been deployed in support of two
real-world applications: an undergraduate course at MIT involving autonomous
quadcopters; and coordinating science-gathering missions for autonomous under-
water vehicles operated by the Woods Hole Oceanographic Institution (WHOI).
Subsequent chapters present the different modules and tools comprising Enter-
prise.

In Chapter 3, we describe cRMPL, an extension of the model-based program-
ming language RMPL [6] that allows missions with state and temporal uncer-
tainty, in addition to risk bounds in the form of chance constraints, to be specified
at a high level of abstraction. In order to be practically useful, a model-based pro-
gramming language must allow easy and reusable modeling of components and
their hierarchical compositions into more complex systems; and enable program-
mers to specify the desired behavior of autonomous systems in terms of desired
state, rather than low-level control commands. Our experiments in Chapter 7 indi-
cate how easily cRMPL can be used as a modeling and control specification tool

4

DISTRIBUTION A: Distribution approved for public release.

by demonstrating it in the temporal coordination of science agents operating under
temporal uncertainty, and in specifying an on-line execution policy that allows a
robot to adapt to its human coworker in a collaborative manufacturing application.

Chapters 4 and 6 present an overview of formal verification tools that allow
conditional plans with sensing and temporal uncertainty to be checked against
safety specifications in the form of chance constraints. The algorithms in Chap-
ter 4, whose detailed description is given in [1], pursue a diagnostic approach to
quickly detect risky plan branches in a plan and verify if the probability of fail-
ure they incur is compatible with the given risk bounds. Picard, the scheduling
algorithm presented in Chapter 6 and thoroughly explained in [7], is capable of
handling probabilistic uncertainty in the timing of actions and compute activity
schedules that are guaranteed to meet their temporal deadlines with high proba-
bility.

In situations where the manual specification of cRMPL programs is tedious
or even intractably large to be done explicitly, one can use RAO∗, a planning
algorithm capable of deriving contingent execution policies with guarantees on
the probability of success in domains with state uncertainty. It is briefly described
in Chapter 5, with a scalability analysis and more detailed explanation given at
the appendices.

In addition to the experimental results described in Chapter 2 and available at
the scientific publications resulting from this project, we present in Chapter 7 a
suite of different demonstrations evaluating Enterprise against the desiderata set
out above. We provide evidence that our methods are generally applicable and
transferable by presenting experiments in three different domains: coordination
of Mars rovers; collaborative human-robot manufacturing; and unmanned aerial
scouts. We also provide insight and references to research in learning probabilistic
models of the environment in support of model-based reasoning and execution,
such as our algorithm for learning Probabilistic Hybrid Automata (PHA) from
experimental data [8]. Finally, we present our conclusions in Chapter 8.

1.4 Publications attributed to this project
For ease of reference, the following is a list of publications concerning work de-
veloped under this project:

• Fang et al., “Chance-Constrained Probabilistic Simple Temporal Problems”
[7];

5

DISTRIBUTION A: Distribution approved for public release.

• Santana & Williams,“Chance-Constrained Consistency for Probabilistic Tem-
poral Plan Networks” [1]

• Santana et al., “Learning Hybrid Models with Guarded Transitions” [8];

• Santana & Williams, “Dynamic Execution of Temporal Plans with Sensing
Actions and Bounded Risk” [9];

• Santana et al., “RAO∗: an Algorithm for Chance-Constrained POMDP’s”
(Appendix A).

6

DISTRIBUTION A: Distribution approved for public release.

Chapter 2

Risk-sensitive model-based
execution

In this chapter we present an overview of Enterprise, the model-based program-
ming and execution architecture used by our risk-sensitive intelligent system.
We describe the flow of information and control, from high-level planning and
scheduling to low-level dispatch and execution layers, and provide evidence of
Enterprise’s ease-of-use by non-experts, mission-enabling features, and transfer-
ability across domains by detailing how it has been deployed in support of two
real-world applications: an undergraduate course at MIT involving autonomous
quadcopters; and coordinating science-gathering missions for autonomous under-
water vehicles operated by the Woods Hole Oceanographic Institution (WHOI).

2.1 Enterprise

Modern robotic systems consist of a variety of components acting together. Broadly
speaking, there is the hardware layer consisting of the actuators and sensors, the
control system layer that drives the hardware to a desired configuration, the plan-
ning and execution layer that generates action sequences, and the input layer
which can be a human or another automated system that provides goals. En-
terprise is a framework for the planning and execution layer and is developed by
the MERS group.

As shown in Figure 2.1, Enterprise accepts as input the goals that should be
achieved, a model of the robot, and a model of the environment and, over time,
outputs commands that are executable by the controls layer. Enterprise accepts

7

DISTRIBUTION A: Distribution approved for public release.

Figure 2.1: Conceptual interface of Enterprise.

the model and goal description in the form of an RMPL (Reactive Model-based
Programming Language) program. Then, activity planners, path planners, and
schedulers are called as needed to create an executable plan in the form of a tem-
poral plan network (TPN). Last, a dispatcher is provided the executable TPN and
it invokes the appropriate actions in the control layer.

Enterprise is designed for a variety of planners to be plugged into it to pro-
vide its described end-to-end capability. The current version of Enterprise allows
only for a manually specified, static configuration of planners. Communication
between planners is done through temporal plan networks, with each planner and
dispatcher accepting TPNs with a subset of the allowable features of a TPN (e.g.,
goals, controllable decisions, uncontrollable decisions, etc.). For this work, En-
terprise was configured to use pKirk, Picard, and Pike as shown in Figure 2.2.
pKirk takes a goal description and models in the form of cRMPL and generates
an executable TPN with choice. pKirk is described in depth in Chapter 5. Picard
is given a chance-constrained probabilistic simple temporal problem (cc-pSTP)
and determines if it is feasible. Picard is used by Kirk to check TPNs as they
are being constructed and is described in depth in Chapter 6. Pike is a dispatcher
and execution monitor that sends commands to the control layer to be executed
at the appropriate times and monitors the sensors to know which choices in the
executable TPN have been made. Pike is described in depth in [10].

8

DISTRIBUTION A: Distribution approved for public release.

Figure 2.2: Configuration of pKirk, Picard, and Pike within Enterprise.

2.2 Enterprise deployments
The Enterprise system has been used in two real-world deployments by people
outside of the MERS group. While neither of these deployments used specifically
the two main algorithms developed in this project, pKirk or Picard, both detailed
later in this report, they serve to demonstrate the broad applicability and transfer-
ability across domains offered by Enterprise.

2.2.1 Crash course in autonomy
During the month of January, 2015, the MERS group (including the authors),
taught a hands on, intro level autonomy course aimed at MIT freshmen and sopho-
mores, titled “Crash Course in Autonomy.” The course was broken into five dif-
ferent modules covering different aspects autonomous systems. In each module,
students were provided an intro lecture, an advanced lecture, and a lab assignment
to apply the technologies covered in the module to simulated and real ARDrone
quadrotors.

For the hands-on lab assignments, the students used different instantiations of
Enterprise appropriate for the lab at hand. For each of the five modules, Enterprise
was used in the following configurations:

• Module 1: Scripting - In this configuration, students were required to write
an RMPL program that compiled directly into an executable TPN. Enter-
prise was configured to only use Pike as a dispatcher.

9

DISTRIBUTION A: Distribution approved for public release.

• Module 2: Localization - Enterprise was unchanged from Module 1. In-
stead, the control layer was augmented to include vision-based localization
and mapping.

• Module 3: Path planning - Enterprise was configured to include basic visi-
bility graph and grid-based path planners. Students wrote RMPL programs
in terms of traversals between named locations instead of specifying the
coordinates of a trajectory to follow.

• Module 4: Activity planning - Enterprise was configured to include the
tBurton activity planner [11] in addition to the path planners. Students wrote
RMPL programs in terms of goals instead specifying which actions to take.

• Module 5: Scheduling - Enterprise was configured to include the Kirk
planne [12] in addition to the path planners. Students wrote RMPL pro-
grams in terms of which actions to perform, but were allowed to specify
choices between different action sequences that achieved the same goal.

As this was an introductory course, risk-aware planners and schedulers were not
covered.

Sixteen students participated in this class. The majority of the students self-
reported as having little to no experience with autonomous systems, but also stated
they found Enterprise easy to use and understand.

2.2.2 WHOI
The Enterprise architecture has also been deployed to control a Slocum glider
autonomous underwater vehicle (AUV) owned and operated by scientists at the
Woods Hole Oceanographic Institution (WHOI). This capability was demonstrated
during a technology validation expedition on the R/V Falkor in the Scott Reef la-
goon in the Timor Sea from March 24 to April 6, 2015. In this demonstration,
Enterprise was used as a decision support system to plan for glider operations in
the presence of five other AUVs and the Falkor itself. The human operators used
Enterprise to plan a series of observations of target regions in between surfacing
for data communication and plan underwater paths for the observations.

In the demonstration, Enterprise was used with RMPL input, the Kirk planner,
and a simplified, risk-aware path planner. Due to technical constraints imposed
by the glider control system, Pike was not used as a dispatcher. Instead, the exe-
cutable TPN was translated directly into the glider’s scripting language.

10

DISTRIBUTION A: Distribution approved for public release.

Figure 2.3: Mission goals for the Slocum glider during the Scott Reef deployment.

Figure 2.3 illustrates the mission goals for the glider deployed during the expe-
dition. Operators discretized a specific area of the lagoon in 15 regions of interest,
cells, to be visited by the glider. Each cell was assigned a priority and a path (red
dashed line) for the glider to traverse. All AUVs on the deployment shared the
cells, but each had unique goals in each cell. In order to avoid collisions, a con-
straint was placed on the AUVs that no more than one AUV could occupy a cell
at a time.

At the beginning of the deployment, the path planner was used without Kirk
to plan transits for nine days in initial testing. At the time of the cruise, the path
planner used a simplified dynamics model and relied on the operator for risk al-
location. Kirk and the path planner were then used in conjunction to successfully
plan for two days of eight hour operations for the glider. The activity planner ef-
ficiently 1) selected subset of science goals with highest return based on science
preference, and 2) ordered and scheduled visitation to respect the aforementioned
constraints. Ocean currents in Scott Reef changed frequently and posed a chal-
lenge for the AUVs deployed during the expedition. The path planning component
successfully planned safe routes around the reef. Moreover, we demonstrated the
executives capability to support re-planning after each glider surface activity. To
the best of our knowledge, a Slocum glider has never before been used inside a
reef before, due to the challenges present in that environment.

11

DISTRIBUTION A: Distribution approved for public release.

Chapter 3

Programming risk-aware missions
with cRMPL

This project developed a chance-constrained, reactive model-based programming
language (cRMPL), that allows the desired behavior of autonomous systems to be
specified at a high-level of abstraction. It extends the original RMPL [13] with the
following features: I) sensing actions, in the form of probabilistic choice nodes;
II) probabilistic temporal uncertainty; III) safety guarantees in the form of chance
constraints; and IV) state constraints.

Mission specifications in cRMPL offer flexibility in the choice of action se-
quences used to reach goals, which are exploited during execution to achieve ro-
bustness. In cRMPL, like traditional programs, time-evolved behavior is spec-
ified using standard control constructs, including parallel and sequential execu-
tion, conditional execution, iteration, contingent, and timed execution. The latter
enables the specification of time-critical missions.

Unlike traditional languages, cRMPL bounds the risk of execution failure, by
allowing a chance constraint to be specified over any cRMPL (sub)expression.
This constraint specifies a maximum probability that that expression will fail to
terminate successfully. To improve robustness, cRMPL includes several con-
structs for introducing choices that the executive makes at run-time, in order to
adapt to delays and failures. This includes decision-theoretic choices between
functionally-equivalent procedures and bounds on procedure execution time. Pro-
grams in cRMPL can also be elevated from specifying action sequences to spec-
ifying desired state evolutions, by introducing state constraints as program prim-
itives. The executive maps states to actions by continuously planning using a set
of action models.

12

DISTRIBUTION A: Distribution approved for public release.

3.1 Features of cRMPL
Our implementation of cRMPL is in the form of an extension of Python, a widely
used, general-purpose programming language. For that reason, cRMPL programs
are represented as objects of the RMPyL class, which stands for “RMPL in Python”.
A list of selected cRMPL features follows:

• since cRMPL is a Python module, anything available in Python can be used
to manipulate cRMPL objects, such as list comprehensions, dictionaries,
recursion, file I/O, network interfaces, etc.;

• cRMPL only depends on the availability of a Python interpreter (either
Python 2 or 3) and its standard libraries, therefore being cross-platform
(Windows, Mac, and GNU/Linux);

• cRMPL is useful for sequencing (describing a temporal program program-
matically), as well as for modeling tasks;

• cRMPL is built around the concept of Episodes (Section 3.2) and their com-
positions. Therefore, it is very easy to write libraries of cRMPL subroutines
that can be composed to form more complex cRMPL programs;

• cRMPL programs can be translated into Probabilistic Temporal Plan Net-
works (pTPN’s) [1] and dispatched by the pKirk executive, both developed
in the context of this grant.

3.2 Episodes
The core building block of cRMPL is the episode (see Figure 3.1). An episode
can be intuitively understood as a period of time during which an activity must be
performed, while respecting a family of state, temporal, and chance constraints.
If the activity can be directly executed by the autonomous system under control,
we call the episode primitive. Alternatively, if the activity to be performed within
an episode consists of a combination of other episodes, we call the outer episode
composite. The ways in which episodes can be combined in cRMPL are explained
in Section 3.4.

More formally, an episode E is a tuple <s, e, A, S,T,C>, where s and e are,
respectively, the temporal events marking the start and end of E; A is either a
primitive activity (can be readily executed by the autonomous agent) or another

13

DISTRIBUTION A: Distribution approved for public release.

Figure 3.1: Example episode specifying that an unmanned aerial vehicle (UAV)
should scan an area for a period between 1 and 10 time units, while making sure
that it maintains itself in a healthy state. If uav-scan can be directly executed by
the UAV, this would be a primitive episode. Otherwise, if uav-scan requires a
combination of more fundamental operators (according to the operations in Sec-
tion 3.4), then this episode would be composite.

episode; and S,T,C are, respectively, sets of state, temporal, and chance con-
straints that should hold during the period of timeE is being executed. In cRMPL,
episodes are instances of the Episode class.

The next section provides further details about the types of constraints that can
be represented within episodes.

3.3 Constraints in cRMPL
Constraints in cRMPL, regardless of their specific type, are split into two groups:
model and user-defined. This characterization is particularly important in the con-
text of chance constraints (Section 3.3.3), since they can only be imposed over
user-defined state and temporal constraints. A model constraint is one that stems
from physical limitations of the system at hand, and, therefore, always holds. One
can mention as examples of model constraints the conservation of flow in network
problems; the degrees of freedom of a robotic arm; and the maximum speed that
a vehicle can attain. On the other hand, user-defined constraints, as their name
says, are externally imposed on the system by the cRMPL programmer to cause it
to behave appropriately. For instance, speed limits on highways are user-defined
constraints that dictate the desired behavior for drivers on that road. Similarly, a
cRMPL programmer could impose the state constraint “stay away of no-fly zones”
in the episode in Figure 3.1.

With this distinction in mind, the following sections provide further details

14

DISTRIBUTION A: Distribution approved for public release.

about the types of constraints that are supported within episodes in cRMPL.

3.3.1 Temporal constraints

Three basic types of temporal constraints are supported in cRMPL: simple tem-
poral constraints (STCs) [14]; STCs with uncertainty (STCUs) [15]; and proba-
bilistic STCs (pSTCs) [4, 5]1.

An STC over two temporal events e1 and e2 is a tuple <e1, e2, l, u> imposing
the constraint e2 − e1 ∈ [l, u], l ≤ u, l, u ∈ R. For an STC, both e1 and e2 can be
freely chosen.

An STCU is very similar to an STC: it is given by a tuple<e1, e2, l, u>, l ≤ u,
l, u ∈ R+. However, for an STCU, the value of e2 is uncontrollable: it will be
chosen by the environment during execution so that e2−e1 ∈ [l, u], but its specific
value cannot be chosen beforehand.

A pSTC extends STCUs by allowing random variables with known proba-
bility distributions to describe the temporal distance between two events. More
formally, a pSTC is a tuple <e1, e2, v> such that e2 = e1 + v, where v is a ran-
dom variable. As with STCUs, the specific value of e2 is not directly controllable:
it is chosen by the environment according to the value of e1 and the probability
distribution of v.

3.3.2 State constraints

Let X be a vector of state variables. The current implementation of cRMPL sup-
ports discrete state variables over finite value domains, and numerical state vari-
ables over continuous ranges of values. For those, two types of states constraints
are available:

• general linear constraints of the form AXn Q b, where A, b are constant
matrices of appropriate dimensions and Xn is the subset of X composed of
numerical state variables;

• and assignment constraints X = c, where c is a vector of constants.

1Disjunctive and conditional temporal constraints of different types can be represented as com-
binations of these different types of simple temporal constraints with the choice operators from
Section 3.4.3.

15

DISTRIBUTION A: Distribution approved for public release.

Alternatively, one can also specify a Boolean constraint-checking function
fS(X), which checks if the vector of state variables X satisfies the state con-
straints S ⊆ S.

There is also a distinction in terms of the period of time during which state
constraints should hold:

at start : state constraints that should hold by the time the start event of an
episode is executed;

at end : same as at start, but for the end event of an episode;

during : state constraints that should hold during the whole period between the
start and end events, but not necessarily at the extrema;

overall : state constraints that should hold at all previously mentioned periods.

3.3.3 Chance constraints
The ability to impose chance constraints on episodes is one of the most important
features of cRMPL. In essence, a chance constraint provides a bound ∆ on the
probability of a set of user-defined constraints R, R ⊆ (S ∪ T), being violated
during the execution of the episode. Therefore, a chance constraint is a tuple
C = <R,∆>. Model constraints are not included in chance constraints because
they are trivially satisfied by the underlying physics.

3.4 Composing episodes in cRMPL
As in the original RMPL, cRMPL subroutines can be hierarchically combined into
composite episodes using sequence, parallel, and choice operators. There is also
iteration, which is built on top of sequence and choice. As previously mentioned,
cRMPL programs are represented as instances of the RMPyL class, which are
capable of specifying complex temporal behavior by combining episodes through
the operations described in this section.

3.4.1 Sequence composition
In a sequence composition of episodes (Figure 3.2), one is executed immediately
after the other, with an optional controllable slack between them represented by a

16

DISTRIBUTION A: Distribution approved for public release.

[0,∞] STC. In cRMPL, a list of episodes can be composed in sequence through
the class method RMPyL.sequence. Alternatively, pairs of episodes can be com-
posed in sequence by the overloaded binary operator “*”.

Figure 3.2: Excerpt of a pTPN depicting a sequential composition of episodes.

3.4.2 Parallel composition
In a parallel composition of episodes (Figure 3.3), there is a common event where
the parallel composition starts, followed by the simultaneous execution of all
episodes in the composition, and a common end event where all parallel execution
branches come to an end. In cRMPL, a list of episodes can be composed in paral-
lel through the class method RMPyL.parallel. Alternatively, pairs of episodes can
be composed in sequence by the overloaded binary operator “+”.

Figure 3.3: Excerpt of a pTPN depicting a parallel composition of episodes.

3.4.3 Choice composition
A choice composition is similar to a parallel one in terms of structure, but only one
of the branches is ever executed. Therefore, it represents a disjunction. Choices
are pictorially represented as double circles, as shown in Figure 3.4. Choices

17

DISTRIBUTION A: Distribution approved for public release.

are either controllable (assigned by the control program) or uncontrollable (as-
signed by an external agent, such as a sensor reading). Uncontrollable choices
can either be non-deterministic and with no associated probability distribution;
or probabilistic, where there is a probability associated with each possible out-
come. Choice compositions are implemented in cRMPL by the class method
RMPyL.choose. Since controllable choices are often used to represent decision
by the program executive, while uncontrollable choices usually represent sensor
readings and other types of environmental observations, cRMPL programs also
have the syntactic-sugar constructs RMPyL.decide and RMPyL.observe to repre-
sent, respectively, controllable and uncontrollable choices.

Figure 3.4: Excerpt of a pTPN depicting a choice (disjunction) composition of
episodes.

3.4.4 Iteration composition

Iterations in cRMPL are implemented by the class method RMPyL.loop. It is re-
cursively defined using the previously described sequence and choice operators,
modeling the process of choosing to execute an activity one more time, and ter-
minate the looping behavior. Iterations constructed with controllable choices give
the program executive flexibility to execute an activity one or more times (up to
a maximum number of repetitions), should that be beneficial to the mission. On
the other hand, loops with uncontrollable choices can be used to represent an
externally-controller looping behavior.

18

DISTRIBUTION A: Distribution approved for public release.

Figure 3.5: Excerpt of a pTPN depicting an iterative composition of episodes. At
the beginning of each iteration, there is a choice between executing the loop once
more, or ceasing the iteration.

3.5 Simple UAV scenario in cRMPL
Figure 3.6 presents a “Hello World” example showing how cRMPL can be used
for modeling, as well as for programming desired temporal behavior.

19

DISTRIBUTION A: Distribution approved for public release.

from rmpyl . rmpyl i m p o r t RMPyL , Episode , C h a n c e C o n s t r a i n t
c l a s s UAV: #UAV c l a s s t h a t g e n e r a t e s e p i s o d e s

d e f f l y (s e l f) :
r e t u r n Ep i sode (d u r a t i o n ={ ’ c t y p e ’ : ’ c o n t r o l l a b l e ’ ,

’ l b ’ : 3 , ’ ub ’ : 1 0} ,
a c t i o n = ’ (f l y) ’)

d e f s can (s e l f) :
r e t u r n Ep i sode (d u r a t i o n ={ ’ c t y p e ’ : ’ c o n t r o l l a b l e ’ ,

’ l b ’ : 1 , ’ ub ’ : 1 0} ,
a c t i o n = ’ (s can) ’)

h e l l o = UAV() ; uav = UAV()
p r = RMPyL ()
p r . p l a n = pr . s e q u e n c e (

p r . p a r a l l e l (
p r . s e q u e n c e (

h e l l o . s can () ,
h e l l o . f l y ()) ,

p r . s e q u e n c e (
uav . f l y () ,
uav . s can ())) ,

p r . d e c i d e ({ ’ name ’ : ’UAV−c h o i c e ’ ,
’ domain ’ : [’ H e l l o ’ , ’UAV’] ,
’ u t i l i t y ’ : [5 , 7] } ,
h e l l o . f l y () ,
uav . f l y ()))

t c = pr . a d d o v e r a l l t e m p o r a l c o n s t r a i n t (c t y p e = ’ c o n t r o l l a b l e ’ ,
l b = 0 . 0 , ub = 1 8 . 0)

c c t i m e = C h a n c e C o n s t r a i n t (c o n s t r a i n t s c o p e =[t c] , r i s k = 0 . 1)
p r . a d d c h a n c e c o n s t r a i n t (c c t i m e)

(a) “Hello World” example in cRMPL.

(b) Corresponding pTPN.

Figure 3.6: “Hello World” example in cRMPL and its corresponding representa-
tion as a pTPN.

20

DISTRIBUTION A: Distribution approved for public release.

Chapter 4

Risk-bounded consistency of
Probabilistic Temporal Plan
Networks

Autonomous agents often are not adopted in highly uncertain environments due
to the risk of mission failure and loss of vehicles. Prior work on contingent plan
execution addresses this issue by placing bounds on uncertain variables and by
providing consistency guarantees for a ‘worst-case’ analysis, which tends to be
too conservative for real-world applications. This chapter presents work that uni-
fies features from risk-sensitive trajectory optimization and high-level plan exe-
cution in order to extend existing guarantees of consistency for conditional plans
to a chance-constrained setting. The result is a set of efficient algorithms for
computing plan execution policies with explicit bounds on the risk of failure. To
accomplish this, we introduce Probabilistic Temporal Plan Networks (pTPN’s),
which improve upon previous formulations by incorporating probabilistic uncer-
tainty and chance-constraints into the plan representation. We develop a novel
method to the chance-constrained strong consistency problem, by leveraging a
conflict-directed approach that searches for an execution policy that maximizes
reward while meeting the risk constraint. Experimental results indicate that our
approach for computing strongly consistent policies has an average scalability
gain of about one order of magnitude, when compared to current methods based
on chronological search.

21

DISTRIBUTION A: Distribution approved for public release.

4.1 Representing uncertainty in contingent tempo-
ral plans

Real-world environments are inherently uncertain, causing agents to inevitably
experience some level of risk of failure when trying to achieve their goals. Instead
of neglecting the existence of risk or overlooking the fact that unexpected things
might have significant impacts on a mission, it becomes key for autonomous sys-
tems trusted with critical missions to have a keen sensitivity to risk and to be able
to incorporate uncertainty into their decision-making.

In this chapter, we address the problem of extracting execution policies with
risk guarantees from contingent plans with uncertainty. The current practice for
ensuring safety in these missions requires groups of engineers to reason over a
very large number of potential decisions and execution scenarios that might un-
fold during execution, which is a challenging, time-consuming, and error prone
process. Given a description of a contingent plan, several different approaches
in the literature developed notions of consistency by representing uncertainty as
set-bounded quantities, i.e., as intervals of values with no associated probability
distribution [16–19]. Nevertheless, in other to guarantee feasibility in all possi-
ble scenarios, consistency-checking algorithms based on set-bounded uncertainty
end up performing a worst-case analysis. When considering situations where un-
certainty causes small plan deviations around otherwise “nominal” values, these
set-bounded consistency criteria work well and output robust, albeit conservative,
execution policies. However, they have difficulties handling problem instances
where uncertainty can potentially lead the system to very hard or even irrecover-
able scenarios, often returning that no robust execution policy exists. This is most
certainly undesirable, since reasonable amounts of risk can usually be tolerated
for the sake of not having the autonomous agent sit idly due to its absolute “fear”
of the worst.

The work presented in this chapter improves upon the state-of-the-art on con-
ditional plan execution by extending the notions of weak and strong plan consis-
tency to a risk-bounded setting and providing efficient algorithms for determining
(or refuting) them. These risk bounds are also known as chance-constraints [20].
Weak and strong consistency are useful concepts when planning missions for
agents whose embedded hardware has very limited computation and telecom-
munication power, making it hard for them to come up with solutions ‘on the
fly’ or for remote operators to intervene in a timely fashion. Chance-constrained
weak consistency (CCWC) is a useful concept for missions where agents operate

22

DISTRIBUTION A: Distribution approved for public release.

in static or slow changing environments after an initial scouting mission aimed
at reducing plan uncertainty. Chance-constrained strong consistency (CCSC), on
the other hand, removes the need for a scouting mission and tries to determine
the existence of a solution that, with probability greater than some threshold, will
succeed irrespective of the outcomes of uncertainty in the plan. Strong consis-
tency is clearly more conservative, but it is appealing to mission managers be-
cause strongly consistent policies require little to no onboard sensing and deci-
sion making, greatly reducing the agents’ complexity and costs. They also reduce
or completely eliminate the need to coordinate between multiple agents. Finally,
the robustness of a strongly consistent policy makes it easier to check by human
operators before it is approved for upload to the remote agent.

We introduce Probabilistic Temporal Plan Networks (pTPNs) as our repre-
sentation of contingent plans. Our pTPN representation holds a lot of similari-
ties with Temporal Plan Networks with Uncertainty (TPNU) [2, 17], Conditional
Temporal Plans (CTPs) [16], Disjunctive Temporal Problems with Uncertainty
(DTPU) [18], and the Conditional Simple Temporal Network with Uncertainty
(CSTNU) [19], but extends them in two important ways. First, pTPNs allow un-
controllable choices (discrete, finite domain random variables) to have their joint
distributions described by a probability model, as opposed to a purely set-bounded
uncertainty representation in DTPUs and CTPs. Second, pTPNs allow the user to
specify admissible risk thresholds that upper bound the probability of violating
sets of constraints in the plan, a missing feature in CTPs, DTPUs, and TPNUs.
The latter extension is an important improvement of pTPNs over previous repre-
sentations when modeling many real-world problems, where risk-free plans that
are robust to all possible uncontrollable scenarios are often unachievable. Our
pTPNs are compiled from contingent plans descriptions in cRMPL (Chapter 3).

4.2 A conflict-directed approach to risk-bounded plan
consistency

Our algorithms reason quantitatively about the probability of different random
scenarios and explore the space of feasible solutions efficiently while bounding
the risk of failure of an execution policy below a user-given admissible thresh-
old. While state-of-the-art methods in the conditional and stochastic CSP litera-
ture rely on a combination of chronological (depth-first) search and inference in
the space of contingencies in order to quickly find satisficing solutions [21–25],

23

DISTRIBUTION A: Distribution approved for public release.

in this work we introduce a “diagnostic” approach based on Conflict-Directed
A∗ (CDA∗) [26]. By continuously learning subsets of conflicting constraints and
generalizing them to a potentially much larger set of pathological scenarios, our
algorithms can effectively explore the space of robust policies in best-first order
of risk while ensuring that it is within the user-specified bound. For the problem
of extracting a strongly consistent policy from a contingent plan description, our
numerical results showed significant gains in scalability for our approach.

Here we motivate the usefulness of chance-constrained consistency on a very
simple commute problem, whose pTPN representation is given in Figure 4.1. We
start at home and our goal is to be at work for a meeting in at most 30 minutes. Cir-
cles represent the start and end events of temporally-constrained activities called
episodes. Simple temporal constraints [14] are represented by arcs connecting
temporal events and represent linear bounds on their temporal distance. For sim-
plicity, we assume that we are given only three possible choices in this pTPN: we
can either ride a bike to work, drive our car, or stay home and call our employer
saying that we will not be able to make it to work today. The rewards (R values)
associated with each one of these choices in Figure 4.1 correspond to how much
money we would make that day minus the cost of transportation. Uncontrollable
choices are depicted in Figure 4.1 by double circles with dashed lines. These are
random, discrete events that affect our plan and whose probability model is also
given in Figure 4.1.

Figure 4.1: A pTPN for a simple plan to get to work

In this example, the uncontrollable choices model what might “go wrong”
during plan execution and the impact of these unexpected events on the overall
duration of the plan. For example, if we decide to ride a bike to work (the option
with the highest reward), there is the possibility that we might slip and fall. This

24

DISTRIBUTION A: Distribution approved for public release.

event has a minor effect on the duration of the ride, but would force us to change
clothes at our workplace because we cannot spend the day in a dirty suit. Since
we only have 30 minutes before the meeting starts, the uncontrollable event of
slipping would cause the overall plan to be infeasible. A similar situation happens
if we choose to drive our car and happen to be involved in an accident.

By ignoring probabilities and using a consistency checker for the pTPN in
Figure 4.1 based on a set-bounded representation of uncertainty, we would realize
that the pTPN is guaranteed to be consistent. Unfortunately, unless we had a
way of telling ahead of time whether we would slip from the bike or be in a car
accident, the suggested policy would be to always stay home! This is because,
for the choice of riding a bike or driving our car to work, there are uncontrollable
scenarios that cause the plan to fail, causing the set-bounded consistency checker
to fall back to the safe, albeit undesirable, choice of staying at home. This clearly
disagrees with our common sense, since people try to achieve their goals while
acknowledging that uncontrollable events might cause them to fail. Next, we show
how our chance-constrained approach would produce execution policies that agree
with what we would expect a “reasonable” agent to do.

Let’s consider the case where we accept that our plan might fail, as long as
the risk ∆ is no more than 2%. Given that riding a bike is the option with the
highest reward, our algorithm would deem bike ridding the most promising and
would start by checking if choosing to ride a bike meets the chance-constraint
∆ ≤ 2%. If there existed a feasible activity schedule satisfying the temporal
constraints for both values of Slip, we could pick this schedule and our risk of
failure would be zero, which is clearly less than our risk bound. However, our
algorithm concludes that the scenario Slip = True is inconsistent with the overall
temporal constraint of arriving at the meeting in less than 30 minutes, so there
must exist a nonzero risk of failure in this case. According to the model in Figure
4.1, the probability of having slip is Pr(Slip) = 5.1%, so riding a bike does not
meet the chance-constraint ∆ ≤ 2%. The next best option is riding a car, where
now we are subject to the uncontrollable event of being in a car accident. Fol-
lowing a similar analysis, we conclude that the risk of our plan being infeasible
in this case is Pr(Accident) = 1.3%, which meets the chance-constraint. There-
fore, our algorithm would advise us to drive to work within the temporal bounds
shown in Figure 4.1 for the case where no accident happens. We claim that this
chance-constrained type of reasoning approximates the decision making process
of mission managers much better than its set-bounded alternative, since operators
need to commit to plans with acceptable levels of risk in order to extract some
useful output from the remote explorer.

25

DISTRIBUTION A: Distribution approved for public release.

It is worth noticing that choosing ∆ < 1.3 would have made staying at home
the only feasible alternative. Hence, as in the set bounded approach, a chance
constraint may still be too conservative to allow for a feasible solution. Moreover,
if the overall temporal constraint of 30 minutes in Figure 4.1 were relaxed to 35
minutes, our algorithm would have been capable of finding a risk-free scheduling
policy for its first choice of riding a bike. This is because, in this case, there would
exist a feasible schedule satisfying all temporal constraints on the upper side of the
pTPN, i.e., temporal constraints activated by both Slip = True and Slip = False.

This example highlights a few key elements of our approach. First, we divide
the problem into generating a candidate “plan” as an assignment to the control-
lable choices and testing the plan against the chance constraints. Second, candi-
dates are enumerated in best-first order based on reward. Third, testing feasibility
of a chance-constraint is a fundamental task, in which estimating risk is costly.
We frame risk estimation as a process of enumerating the most likely sets of sce-
narios that incur and do not incur risk (called conflicts and kernels, respectively).
We observe that this can be formulated as a symptom-directed, “diagnostic” pro-
cess, allowing us to leverage an efficient, conflict-directed best-first enumeration
algorithm, Conflict-Directed A∗ (CDA∗) [26], to generate kernels and conflicts,
and hence feasible and infeasible scenarios. A detailed description of this work
can be found at [1].

26

DISTRIBUTION A: Distribution approved for public release.

Chapter 5

Model-based generation of
risk-aware plans

Similar to conventional programming languages, using cRMPL (Chapter 3) to
specify safe autonomous behavior at a high level of abstraction is done declar-
atively, i.e., the programmer is responsible for the explicit enumeration of all
sequence and parallel composition of episodes, along with all decisions (control-
lable choices) and observations (uncontrollable choices) in the program. Once it is
available, this program can be checked for risk-bounded temporal consistency us-
ing the methods described in Chapter 4. There are, however, two important caveats
related to this approach. First, the computational cost of checking consistency of
cRMPL programs and the size of their corresponding pTPN’s grow exponentially
with the number of choices. Second, in application domains where there is sig-
nificant flexibility in terms of the decisions an autonomous agent can make, and
the number of possible observations that it might receive from the environment,
thinking through the sequential act-observe-act-· · · process declaratively can be
too challenging of a task for a human programmer.

This chapter introduces Risk-bounded AO∗ (RAO∗), a heuristic forward search
algorithm capable of automatically generating cRMPL programs from chance-
constrained POMDP (CC-POMDP) models, a novel variant of Partially Observ-
able Markov Decision Processes (POMDP’s) that we propose to allow autonomous
agents operating under uncertainty to optimize expected performance while bound-
ing the risk of violating safety constraints. In the development of RAO∗ (detailed
technical description available in Appendix A), we perform a systematic deriva-
tion of execution risk in POMDP domains, improving upon how risk was pre-
viously handled in the constrained POMDP (C-POMDP) literature. In addition

27

DISTRIBUTION A: Distribution approved for public release.

to the utility heuristic used to guide RAO∗ towards cRMPL programs with bet-
ter performance, our algorithm leverages an admissible execution risk heuristic
to quickly detect and prune overly-risky cRMPL program branches, therefore en-
abling their early pruning. In Chapter 7, we show how cRMPL programs gener-
ated with RAO∗ can be hierarchically combined within user-specified cRMPL pro-
grams in a hybrid declarative/generative approach for describing safe autonomous
behavior.

5.1 The need for handling risk in planning domains
with uncertainty

Partially Observable Markov Decision Processes (POMDPs) [27] have become
one of the most popular frameworks for optimal planning under actuator and sen-
sor uncertainty, where POMDP solvers find policies that maximize some measure
of expected utility [28, 29].

In many application domains, however, performance is not enough. Critical
missions in real-world scenarios require agents to develop a keen sensitivity to
risk, which needs to be traded-off against utility. For instance, a search and res-
cue UAV should maximize the value of the information gathered, subject to safety
constraints such as avoiding dangerous areas and keeping sufficient battery levels.
In these domains, autonomous agents should seek to optimize expected reward
while remaining safe by deliberately keeping the probability of violating one or
more constraints within acceptable levels. Unsurprisingly, attempting to model
risk bounds as negative rewards leads to models that are over-sensitive to the par-
ticular penalty value chosen, and to policies that are overly risk-averse or overly
risk-taking [30]. Therefore, to accommodate the aforementioned types of scenar-
ios, new models and algorithms for constrained MDPs have started to emerge,
which handle chance constraints explicitly.

Research has mostly focused on fully observable constrained MDPs, for which
non-trivial theoretical properties are known [31,32]. Existing algorithms cover an
interesting spectrum of chance constraints over secondary objectives or even exe-
cution paths, e.g., [33–35]. For constrained POMDPs (C-POMDP’s), the state of
the art is less mature. It includes a few suboptimal or approximate methods based
on extensions of dynamic programming [36], point-based value iteration [37], ap-
proximate linear programming [38], or on-line search [30]. Moreover, the model-
ing of chance constraints through unit costs in the C-POMDP literature has a num-

28

DISTRIBUTION A: Distribution approved for public release.

ber of shortcomings, such as requiring constraint violations to be fully observable
and cause program execution to halt immediately, leading to conservatism.

5.2 Searching for optimal, risk-bounded cRMPL pro-
grams

Because cRMPL supports programs that control agents with hidden state (only
partially observable through sensing actions), RAO∗ performs its search for a
performance-maximizing, risk-bounded cRMPL program in the space of discrete
belief states. Simply put, a discrete belief state consists of a list of possible hidden
states that an autonomous agent (and its environment) might be at a given point in
time, along with its associated probability (see top right corner of Figure 5.1).

Starting from an initial belief state b0, RAO∗ explores the space of belief states
using heuristic forward search by keeping track of two graphs: I) an explicit search
graphG, whose nodes represent all belief states explored so far; and II) the greedy
graph g, which is the subset of the explicit graph that currently contains our best
estimate of the best-performing cRMPL program. Figure 5.1 shows the tree repre-
sentation of an “act-and-observe” step in a cRMPL program, and Figure 5.2 shows
how the information in Figure 5.1 can be represented in the form of a hypergraph.
As shown in Figure 5.2, controllable choices in cRMPL are represented as actions
in the hypergraph. Once the agent performs that action, the agent receives one of
a family of possible sensor inputs (including “no input”). These correspond to un-
controllable choices in cRMPL, and are represented as hyperedges (associated to
that particular action) in the hypergraph where RAO∗ performs its search. Figure
5.2 shows a portion of the explicit search graph G with a leaf node on the k-th
layer being expanded.

Similar to AO∗ [39], RAO∗ searches for performance-maximizing cRMPL
programs by propagating optimistic (upper bound) estimates of utility recursively
from child to parent nodes in its explicit graph G. In addition to utility, RAO∗

introduces a novel heuristic propagation of the execution risk associated with a
cRMPL program, therefore allowing it to compute increasingly precise estimates
of how likely it is for program execution to deviate from safety and violate one
or more user-specified constraints. As with utility, recursive propagation of op-
timistic (lower bounds, in this case) estimates of a cRMPL program’s execution
risk are performed from child to parent nodes in the explicit graph G - see equa-
tion (12) in Appendix A. These optimistic risk estimates are used to quickly detect

29

DISTRIBUTION A: Distribution approved for public release.

Figure 5.1: Detailed representation of the process of choosing among n differ-
ent controllable choices in an cRMPL program (a1, a2, . . . , an), and subsequently
receiving one of m possible uncontrollable choices (o1, o2, . . . , om). Nodes (cir-
cles) represent belief states, which are in turn represented as lists of possible hid-
den states and associated probabilities. Belief states after performing an action
are called prior beliefs, while belief states that incorporate new observations are
called posterior beliefs.

overly risk-taking branches in a cRMPL program during the search process, allow-
ing for their early pruning and potential significant reduction of the search space.
At any given point during the search, the greedy graph g of RAO∗ represents the
current estimate of a contingent cRMPL that maximizes agent performance while
strictly abiding to the risk-bounds defined by chance constraints.

Appendix A presents a detailed derivation of the RAO∗ algorithm, along with
its pseudo-code and thorough numerical evaluation.

30

DISTRIBUTION A: Distribution approved for public release.

Figure 5.2: Representation of Figure 5.1 as a hypergraph node with several hyper-
edges associated to different actions. In a cRMPL program, actions correspond
to controllable choices (decisions), while hyperedges are associated with the pos-
sible observations (uncontrollable choices) that the agent might receive from the
environment upon executing an action.

31

DISTRIBUTION A: Distribution approved for public release.

Chapter 6

Chance-constrained optimal
scheduling

In field deployment, there is often uncertainty about the exact timing of events
caused by actions whose durations which are not controllable by the operator and
not known a priori. For example, while the nominal flight time of a vehicle may be
known, the actual flight time varies based on the conditions on the day. A reliable,
robust scheduling scheme is thus required to take into account the uncertainty in
durations in the mission.

The algorithm known as Picard deals with the risk-aware scheduling aspect
of the overall problem. In contrast to traditional approaches, we use probabilistic
representations of uncertainty, representing the values of uncontrollable durations
with random variables. The distributions allow us to reason about the most likely
ranges for the durations, and provide schedules which will meet the timing re-
quirements with probabilistic guarantees without undue conservatism.

6.1 Problem Statement

In field deployment on critical missions, the cost of failing to meet timing con-
straints is often difficult to quantify. We must instead provide probabilistic guar-
antees for timeliness, accounting for the uncertain durations. In addition to robust-
ness against constraint violation, the desirability of schedules may also depend on
the time assignments: the quality of shallow water data may depend on the collec-
tion time due to the tidal cycle, and car sharing networks may require the inactive
times of the cars to be low to maximize use of assets.

32

DISTRIBUTION A: Distribution approved for public release.

Descriptions and corresponding solution methods for such problems must thus
have the following characteristics. First, the description must allow the specifica-
tion of an utility function to be optimized. Second, the description must recognize
stochasticity in durations with a probabilistic representation. Further, the problem
description must allow rich expressions of constraints. For example, we must be
able to describe requirements between the timing of two uncertain events when
we schedule a traversal with uncertain duration to observe natural phenomena
with uncertain timing. The scheduler must thus maximize utility while providing
probabilistic guarantees of compliance with requirements.

We thus make use of the formalism described in [7] to define the underlying
network describing the temporal constraints.

Definition 1. (Probabilistic STN) Let:

• activated time-points bi ∈ R be those assigned by the agent;

• received time-points ei ∈ R be those assigned by the external world;

• free constraints cxy (Free) be constraints of type (y − x) ∈ [lxy, uxy],
where x, y are time points; and

• uncertain duration (uDn) dxy : Ω → R be random variables describing
the difference (y − x) = dxy (ω), where y is a received time point and x
is an activated time point, for (Ω,F , P) a probability space with sample
space Ω, σ-algebra F and measure P .

Then, N+ = 〈Xb, Xe, Rc, Rd〉 defines a pSTN, with

• Xb = {b1, ..., bB} the set of B ∈ N activated time-points;

• Xe = {e1, ..., eE} the set of E ∈ N received time-points;

• Rc = {ci1j1 , ..., ciCjC} the set of C ∈ N Frees; and

• Rd = {di1j1 , ..., diGjG} the set of G ∈ N uDns;

The pSTN allows us to express the controllable and uncontrollable events in
a mission, as well as the requirements between them and the durations which are
responsible for the uncertainty in the timing of events. We must find a schedule
which optimizes an objective function, but also has a limited probability of failing
to meet the constraints encoded in the pSTN. More formally, we must solve a
chance-constrained probabilistic simple temporal problem (cc-pSTP), as defined
below.

33

DISTRIBUTION A: Distribution approved for public release.

Definition 2. (Chance-constrained pSTP)
Given:

• N+ = 〈Xb, Xe, Rc, Rd〉, a pSTN;

• ∆t ∈ [0, 1], an upper bound on the risk of failure, for the set Rc of Frees;
and

• V : RB → R, an objective function dependent on assignments to Xb;

Find:

• S∗B ∈ RB, a schedule of Xb minimizing V ;

Subject to:

• rRc(S
∗
B) ≤ ∆t, the probability of inconsistency bounded by ∆t;

In solving a cc-pSTP, we are required to find a timetable to each of the events
whose timings we can control. The timetable must be optimal with respect to a
predefined objective function, while meeting the temporal constraints set out in
the pSTN with a probability greater than 1−∆t.

6.2 Intuition for solution method
In this section we provide an intuition for the solution method. For the full solution
method and the theoretical proofs and guarantees, the interested reader is directed
to [7].

In general, it is not possible to guarantee against all eventualities. For example,
it may be possible that a vehicle will take an infinite amount of time to arrive at
a location, having broken down along the way. The key idea is to find a high
probability subset of scenarios, and provide a schedule which will meet all timing
constraints for the subset of scenarios.

We limit the scenarios we consider through risk allocation. We are given an
upper bound on the probability of failure to meet the constraints. We can consider
this the total risk allowed. We can spend this risk on the tail ends of the uncertain
durations to limit the range of outcomes. By allocating the risk to the lower tail of
an uncertain duration, we may find the outcomes for which the cumulative density
function matches the allocated risk. Then, we can disregard any shorter outcomes

34

DISTRIBUTION A: Distribution approved for public release.

Figure 6.1: Risk allocation to find reasonable ranges of outcomes for uncertain
durations.

for the uncertain duration - they can be considered expectedly short. A similar
procedure is done with the upper bound.

In this way, we can define the unexpectedly long and short outcomes, and dis-
regard them in our calculations. We are allowed to do this because the combined
probability of any uncertain duration being in the unexpected regions is less than
that allowed by the operator. We have thus derived set-bounded uncertainty for
our temporal uncertainty. We are then able to call upon existing literature deal-
ing with set-bounded temporal uncertainty, for example in [40]. This allows us to
encode the cc-pSTP as a nonlinear optimization problem.

35

DISTRIBUTION A: Distribution approved for public release.

Chapter 7

Experimental validation

This chapter presents experimental validation, both in simulation and on real hard-
ware, of the integrated components of Enterprise explained in this report. Detailed
numerical analysis of the separate pieces can be found at the referenced publica-
tions, or at the appendices accompanying this report. Therefore, in this chapter,
we focus on demonstrating the integrated deployments of our system, and evalu-
ate the general applicability of our risk-aware architecture by demonstrating our
algorithms in a number of different domains, ranging from planetary rovers and
autonomous aircraft to robotic manufacturing.

The experiments in this section are organized as follows. In Section 7.1, we
start by showing how cRMPL can be used for modeling and control purposes in
a planetary exploration application involving the coordination of two rovers and
a satellite. Next, Section 7.2 shows how cRMPL can be used to easily describe
contingent plans in a robotic manufacturing setting, where a robot is actively try-
ing to adapt to its human co-worker in order to achieve their common task goals.
Finally, Section 7.3 shows how optimal cRMPL programs with sensing actions
can be generated by RAO∗ and used to implement optimal, safe behavior of an
autonomous aircraft tasked with finding hidden targets of interest.

7.1 Vehicle coordination under temporal uncertainty

Figure 7.1 depicts the planetary exploration scenario involved in this demonstra-
tion. Two autonomous rovers, Spirit and Opportunity, are tasked with the ex-
ploration of a number of predetermined locations on a region of Mars filled with
obstacles. Once a rover arrives at a site, it must perform a number of science-

36

DISTRIBUTION A: Distribution approved for public release.

gathering activities whose temporal durations are uncertain, but bounded by upper
and lower bounds hard-coded in the rover’s science module. There is also uncer-
tainty related to the traversal times between locations, and these are represented as
random variables whose distributions are predicted based on the distance between
the sites and the features of the terrain (Section 7.1.1 explains how these uncer-
tainty models can be learned from data). Finally, both rovers have to go back to a
relay site in order to transmit their findings to an orbiting satellite, which will be
reachable by the rovers’ antennas within a known time window. In order to maxi-
mize throughput, there is the added constraint that the rovers should communicate
approximately at the same time with the satellite, but their transmissions should
not overlap. Finally, since one would like to avoid any need of coordination be-
tween the two rovers, we require that there exists a precomputed schedule that
satisfies all temporal constraints and is robust to the uncertainty in the temporal
durations coming from the rover model.

Figure 7.2 shows the portion of cRMPL code describing the model for the
different actions available to the rovers, along with their temporal durations and
hierarchical composition. The PySuluRMPyL object implements pSulu [41, 42],
a chance-constrained path planner developed in our group and called from within
cRMPL to return trajectories that are safe when avoiding obstacles. These tra-
jectories are converted into traversal episodes using cRMPL’s composition con-
structs.

The cRMPL code in Figure 7.3 describes the temporal coordination of two
science rovers. As we can see from the code, Spirit is responsible for gathering
information about minerals, followed by a visit to funny rock and return to relay.
In parallel, Opportunity must travel to the distant alien lair, perform its science,
and then head to the relay location. The tc relay constraint requires Opportunity
to start sending its data no more than 10 seconds after Spirit has finished trans-
mitting, and there is an overall temporal constraint [1800, 2000] representing the
200 second window during which the satellite will be visible. A risk bound of 1%
is placed on the violation of either of these two constraints, given the uncertainty
associated with the temporal durations in this plan. In Figure 7.4, we see a pTPN
representation of the cRMPL program in Figure 7.3.

The traversal episodes from to region shown in Figure 7.4 are each broken
by pSulu into 10 intermediate segments, each one of them featuring a stochastic
duration represented by a Gaussian random variable. We used Picard (Chapter 6)
to generate a risk-bounded, strongly controllable (precomputed) schedule in 11.7
seconds, with the additional optimization that the schedule commands the rovers
to initiate their activities as early as possible. From this example, one should

37

DISTRIBUTION A: Distribution approved for public release.

Figure 7.1: The Mars rover scenario featuring two robotic scouts (Spirit and Op-
portunity) that must explore different regions of the map and coordinate their com-
munication with an orbiting satellite at a relay station. It is implemented in the
MobileSim simulator.

notice how easy it is to model realistic temporal coordination missions in cRMPL
with environmental uncertainty and risk bounds, and how efficiently Picard is able
to leverage acceptable risk levels to compute schedules that are easy to verify, are
robust to uncertainty, and offer hard guarantees that all mission requirements will
be met with high probability (at least 99%, in this example).

7.1.1 Learning uncertain temporal duration models from data
The previously presented demonstration assumes knowledge about the temporal
uncertainty associated with traversals, such as the one shown in Figure 7.5. There
is the question, nevertheless, of how one can learn these traversal distributions
from data, so that they can be incorporated into cRMPL models.

38

DISTRIBUTION A: Distribution approved for public release.

c l a s s Rover (o b j e c t) :
”””
Simple RMPyL model f o r a Mars r o v e r .
”””
d e f i n i t (s e l f , name) :

s e l f . name=name
s e l f . p a t h p l a n n e r = PySuluRMPyL ()

d e f g o t o (s e l f , s t a r t , goa l , r i s k , w a y p o i n t s =10 , t i m e h o r i z o n = 2 0 0 . 0) :
”””
R e t u r n s t h e e p i s o d e c o r r e s p o n d i n g t o t h e v e h i c l e t r a v e l i n g .
”””
s e l f . r o v e r p a r a m [’ c h a n c e c o n s t r a i n t ’]= r i s k
s e l f . r o v e r p a r a m [’ w a y p o i n t s ’]= w a y p o i n t s
s e l f . r o v e r p a r a m [’ t i m e h o r i z o n ’]= t i m e h o r i z o n

g o t o e p = s e l f . p a t h p l a n n e r . p l a n e p i s o d e (s t a r t s t a t e = s t a r t + (0 . 0 , 0 . 0) ,
g o a l s t a t e = g o a l + (0 . 0 , 0 . 0) ,
p a r a m e t e r s = s e l f . r o ve r p a r a m ,
d u r a t i o n t y p e = ’ g a u s s i a n ’ ,
a g e n t = s e l f . name)

r e t u r n g o t o e p

d e f p e r f o r m s c i e n c e (s e l f) :
”””
R e t u r n s t h e e p i s o d e c o r r e s p o n d i n g t o t h e v e h i c l e p e r f o r m i n g s c i e n c e
e x p e r i m e n t s .
”””
p s e p = s e q u e n c e c o m p o s i t i o n (

Ep i sode (d u r a t i o n ={ ’ c t y p e ’ : ’ u n c o n t r o l l a b l e b o u n d e d ’ , ’ l b ’ : 9 , ’ ub ’ : 1 1} ,
a c t i o n = ’ (d r i l l %s) ’%(s e l f . name)) ,

Ep i sode (d u r a t i o n ={ ’ c t y p e ’ : ’ u n c o n t r o l l a b l e b o u n d e d ’ , ’ l b ’ : 1 0 , ’ ub ’ : 1 5} ,
a c t i o n = ’ (c o l l e c t %s) ’%(s e l f . name)) ,

Ep i sode (d u r a t i o n ={ ’ c t y p e ’ : ’ c o n t r o l l a b l e ’ , ’ l b ’ : 5 , ’ ub ’ : 3 0} ,
a c t i o n = ’ (p r o c e s s %s) ’%(s e l f . name)))

r e t u r n p s e p

d e f r e l a y (s e l f) :
”””
R e t u r n s t h e e p i s o d e r e p r e s e n t i n g t h e r o v e r s e n d i n g d a t a back t o a s a t e l l i t e .
”””
r e l e p = Ep i sode (d u r a t i o n ={ ’ c t y p e ’ : ’ c o n t r o l l a b l e ’ , ’ l b ’ : 5 , ’ ub ’ : 3 0} ,

a c t i o n = ’ (r e l a y %s) ’%(s e l f . name))
r e t u r n r e l e p

Figure 7.2: cRMPL class modeling the actions of a science retrieval rover.

39

DISTRIBUTION A: Distribution approved for public release.

l o c ={ ’ s t a r t ’ : (8 . 7 5 1 , −8 . 6 2 5) , ’ m i n e r a l s ’ : (0 . 0 , −1 0 . 0) ,
’ f u n n y r o c k ’ : (−5 .0 ,−2 .0) , ’ r e l a y ’ : (0 . 0 , 0 . 0) , ’ a l i e n l a i r ’ : (0 . 0 , 1 0 . 0) }

rov1 = Rover (name= ’ s p i r i t ’)
rov2 = Rover (name= ’ o p p o r t u n i t y ’)

prog = RMPyL(name= ’ run () ’)
prog ∗= prog . p a r a l l e l (

p rog . s e q u e n c e (
rov1 . g o t o (s t a r t = l o c [’ s t a r t ’] , g o a l = l o c [’ m i n e r a l s ’] , r i s k = 0 . 0 1) ,
rov1 . p e r f o r m s c i e n c e () ,
rov1 . g o t o (s t a r t = l o c [’ m i n e r a l s ’] , g o a l = l o c [’ f u n n y r o c k ’] , r i s k = 0 . 0 1) ,
rov1 . p e r f o r m s c i e n c e () ,
rov1 . g o t o (s t a r t = l o c [’ f u n n y r o c k ’] , g o a l = l o c [’ r e l a y ’] , r i s k = 0 . 0 1) ,
rov1 . r e l a y (e p i d = rov1 . name+ ’ r e l a y ’)) ,

p rog . s e q u e n c e (
rov2 . g o t o (s t a r t = l o c [’ s t a r t ’] , g o a l = l o c [’ a l i e n l a i r ’] , r i s k = 0 . 0 1) ,
rov2 . p e r f o r m s c i e n c e () ,
rov2 . g o t o (s t a r t = l o c [’ a l i e n l a i r ’] , g o a l = l o c [’ r e l a y ’] , r i s k = 0 . 0 1) ,
rov2 . r e l a y (e p i d = rov2 . name+ ’ r e l a y ’)))

r 1 r e l = prog . e p i s o d e b y i d (rov1 . name+ ’ r e l a y ’)
r 2 r e l = prog . e p i s o d e b y i d (rov2 . name+ ’ r e l a y ’)

t c r e l a y = T e m p o r a l C o n s t r a i n t (s t a r t = r 1 r e l . end , end= r 2 r e l . s t a r t ,
c t y p e = ’ c o n t r o l l a b l e ’ , l b = 0 . 0 , ub = 1 0 . 0)

prog . a d d t e m p o r a l c o n s t r a i n t (t c r e l a y)

t c = prog . a d d o v e r a l l t e m p o r a l c o n s t r a i n t (c t y p e = ’ c o n t r o l l a b l e ’ , l b =1800 .0 , ub = 2 0 0 0 . 0)
c c t i m e = C h a n c e C o n s t r a i n t (c o n s t r a i n t s c o p e =[tc , t c r e l a y] , r i s k = 0 . 1)
prog . a d d c h a n c e c o n s t r a i n t (c c t i m e)

Figure 7.3: Program in cRMPL describing the temporal coordination between two
science-retrieval agents.

Figure 7.4: pTPN representation of the control script in Figure 7.3.

40

DISTRIBUTION A: Distribution approved for public release.

Figure 7.5: Example of a traversal generated by pSulu, a chance-constrained path
planner.

In this demonstration, we made the assumption that traversal times between
waypoints, as the ones shown in Figure 7.5, can be accurately predicted as a sim-
ple function of the Euclidean distance between them (length of the straight line
connecting the two regions in space). To be more precise, we assumed the linear
model d(l) = al+b, where l is the length of the line connecting the two waypoints;
d is the duration of the traversal; and a and b are unknown parameters. In order to
estimate a and b, we simulated hundreds of different traversals in the environment
shown in Figure 7.1 and measured the time it took our path-following controller
to drive a rover between those locations. For the i-th traversal performed out of a
total of N , we recorded the pair (li, di). Then, we chose â, b̂, our best estimates of
the parameters a and b, according to

â, b̂ = arg min
a,b

N∑
i=1

(ali + b− di)2, (7.1)

i.e., we chose â and b̂ so as to minimize the variance of the predictor d̂(l) = âl+ b̂.

41

DISTRIBUTION A: Distribution approved for public release.

In order to estimate the variance of the prediction d̂(l) for an arbitrary length l, we
compute the empirical variance of the samples (li, di) in a neighborhood around l.
Figure 7.6 shows one such model learned with (7.1) from simulated data, where
the upper and lower 3σ bounds for the variance are computed based on the worst-
case empirical variance encountered on the dataset. Note that the exact same
procedure could be used if real traversal data were available, therefore allowing
(7.1) to be used with both real and synthetic data combined.

Figure 7.6: Stochastic traversal time model learned from data. The horizontal
axis represents the Euclidean distance between waypoints, while the vertical axis
represents the traversal time. The upper and lower 3σ bounds are computed based
on the worst-case empirical variance encountered on the dataset.

7.2 Baxter cooperative manufacturing
In this integrated demo, we show how a non-expert user can interact with the Bax-
ter robot in a collaborative task where the robot is constantly adapting to its human
coworker, therefore requiring plans with embedded contingencies. In the proof of
concept, the red and green blocks must be moved to their appropriate locations, as
shown in Figure 7.7. At every given point in time, the robot observes the current
state of the manufacturing task and acts accordingly. The videos at http://

42

DISTRIBUTION A: Distribution approved for public release.

Figure 7.7: The Baxter workspace setup.

people.csail.mit.edu/psantana/public/videos/AFOSR/ show
two situations:

• in the nominal run, the human does not interfere with the robot, which pro-
ceeds to pick and place the blocks in sequence according to the execution
policy;

• in the second run, the human helps the robot and places the green block at
its destination. The robot senses this, and looks at the policy derived for the
sensed system state, resulting in a pick and place of the red block.

The program implementing such behavior is shown in Figure 7.8, along with
its pTPN representation in Figure 7.9.

The user programs the specifications and a temporally consistent and chance-
constrained execution policy is generated by the system. This is given as an input
to Enterprise’s executive known as Pike [10]. Further, the demonstration shows
that the system executes in real-time. The derived policy with timing constraints

43

DISTRIBUTION A: Distribution approved for public release.

d e f say (t e x t) :
””” F i n a l message t o t h e human . ”””
r e t u r n Ep i sode (a c t i o n =(’ (say \”%s \”) ’%t e x t))

d e f p i c k a n d p l a c e b l o c k (prog , b lock , p i c k l o c , p l a c e l o c , manip , a g e n t) :
””” ” P i c k s a b l o c k and p l a c e s i t somewhere . ”””
o b j = b l o c k + ’ Component ’
r e t u r n prog . s e q u e n c e (

say (’ Going t o p i c k %s ’%o b j) ,
Ep i sode (a c t i o n =(’ (p i c k %s %s %s %s) ’%(obj , manip , p i c k l o c , a g e n t))) ,
Ep i sode (a c t i o n =(’ (p l a c e %s %s %s %s) ’%(obj , manip , p l a c e l o c , a g e n t))))

d e f o b s e r v e a n d a c t (prog , b locks , manip , a g e n t) :
””” Robot o b s e r v e s human and a c t s a c c o r d i n g l y . ”””
i f l e n (b l o c k s) >0:

#Human h e l p e d wi th one o f t h e b l o c k s
human help =[o b s e r v e a n d a c t (

prog ,
[ob f o r ob i n b l o c k s i f ob != b] , manip , a g e n t) f o r b i n b l o c k s]

#No h e l p from t h e human
no human he lp = prog . s e q u e n c e (p i c k a n d p l a c e b l o c k (prog , b l o c k s [0] ,

b l o c k s [0] + ’ Bin ’ ,
b l o c k s [0] + ’ T a r g e t ’ ,
manip , a g e n t) ,

o b s e r v e a n d a c t (prog , b l o c k s [1 :] , manip , a g e n t))
A l l e p i s o d e s
a l l e p i s o d e s = human help +[no human he lp]

Observe each one o f t h e b l o c k s
o b s e r v a t i o n s = b l o c k s +[’ none ’]
r e t u r n prog . s e q u e n c e (prog . o b s e r v e ({ ’ name ’ : ’ obse rve−human−%d ’%(l e n (b l o c k s)) ,

’ c t y p e ’ : ’ u n c o n t r o l l a b l e ’ ,
’ domain ’ : o b s e r v a t i o n s } ,
∗ a l l e p i s o d e s))

e l s e :
r e t u r n say (’ A l l done ! ’)

C o n t r o l program s t a r t s h e r e
b l o c k s =[’ Red ’ , ’ Green ’]
a g e n t = ’ B a x t e r ’
manip= ’ B a x t e r R i g h t ’
prog = RMPyL(name= ’ run () ’)
prog ∗= prog . s e q u e n c e (say (’ Should I s t a r t ? ’) ,

p rog . o b s e r v e ({ ’ name ’ : ’ obse rve−human−%d ’%(l e n (b l o c k s)) ,
’ c t y p e ’ : ’ u n c o n t r o l l a b l e ’ ,
’ domain ’ : [’YES ’ , ’NO’]} ,
o b s e r v e a n d a c t (prog , b locks , manip , a g e n t) ,
say (’ A l l done ! ’)))

Figure 7.8: Complete cRMPL program used to implement the collaborative man-
ufacturing demonstration.

44

DISTRIBUTION A: Distribution approved for public release.

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]
[0

,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]
[0

,
∞

]

[0
,
∞

]

[0
,
∞

]
[0

,
∞

]
[0

,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]
[0

,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]
[0

,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]
[0

,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]
[0

,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]

[0
,
∞

]
[0

,
∞

]

[0
,
∞

]

(s
a
y
 "

g
o
in

g
 t

o
 p

ic
k

g
re

e
n
co

m
p

o
n

e
n
t"

)

[0
,
∞

]

(p
ic

k
g

re
e
n
co

m
p

o
n
e
n

t
b

a
x
te

rr
ig

h
t

g
re

e
n
b

in
 b

a
x
te

r)

[0
,
∞

]

(s
a
y
 "

a
ll

d
o
n
e
!"

)

[0
,
∞

]

(s
a
y
 "

a
ll

d
o
n
e
!"

)

[0
,
∞

]

(s
a
y
 "

a
ll

d
o
n
e
!"

)

[0
,
∞

]

(s
a
y
 "

ch
e
ck

in
g

 i
f

th
e
 h

u
m

a
n
 m

o
v
e
d

 g
re

e
n
 c

o
m

p
o
n

e
n
ts

 o
r

n
o
n
e
")

[0
,
∞

]

(s
a
y
 "

a
ll

d
o
n
e
!"

)

[0
,
∞

]

(p
la

ce
 g

re
e
n
co

m
p

o
n

e
n
t

b
a
x
te

rr
ig

h
t

g
re

e
n
ta

rg
e
t

b
a
x
te

r)

[0
,
∞

]

(p
la

ce
 g

re
e
n
co

m
p

o
n

e
n
t

b
a
x
te

rr
ig

h
t

g
re

e
n
ta

rg
e
t

b
a
x
te

r)

[0
,
∞

]

(s
a
y
 "

ch
e
ck

in
g

 i
f

th
e
 h

u
m

a
n
 m

o
v
e
d

 r
e
d

,g
re

e
n
 c

o
m

p
o
n

e
n
ts

 o
r

n
o
n
e
")

[0
,
∞

]

(p
ic

k
re

d
co

m
p

o
n
e
n
t

b
a
x
te

rr
ig

h
t

re
d

b
in

 b
a
x
te

r)

[0
,
∞

]

(s
a
y
 "

sh
o
u
ld

 i
 s

ta
rt

?"
)

[0
,
∞

]

(p
ic

k
g

re
e
n
co

m
p

o
n
e
n

t
b

a
x
te

rr
ig

h
t

g
re

e
n
b

in
 b

a
x
te

r)

[0
,
∞

]
(s

a
y
 "

a
ll

d
o
n
e
!"

)

[0
,
∞

]

(s
a
y
 "

ch
e
ck

in
g

 i
f

th
e
 h

u
m

a
n
 m

o
v
e
d

 g
re

e
n
 c

o
m

p
o
n

e
n
ts

 o
r

n
o
n
e
")

[0
,
∞

]

(s
a
y
 "

a
ll

d
o
n
e
!"

)

[0
,
∞

]

(p
la

ce
 r

e
d

co
m

p
o
n
e
n

t
b

a
x
te

rr
ig

h
t

re
d

ta
rg

e
t

b
a
x
te

r)

[0
,
∞

]

(p
la

ce
 r

e
d

co
m

p
o
n
e
n

t
b

a
x
te

rr
ig

h
t

re
d

ta
rg

e
t

b
a
x
te

r)

[0
,
∞

]

(s
a
y
 "

g
o
in

g
 t

o
 p

ic
k

re
d

co
m

p
o
n
e
n

t"
)

[0
,
∞

]

(s
a
y
 "

a
ll

d
o
n
e
!"

)

[0
,
∞

]

(s
a
y
 "

g
o
in

g
 t

o
 p

ic
k

re
d

co
m

p
o
n
e
n

t"
)

[0
,
∞

]

(p
ic

k
re

d
co

m
p

o
n
e
n
t

b
a
x
te

rr
ig

h
t

re
d

b
in

 b
a
x
te

r)

[0
,
∞

]

(s
a
y
 "

g
o
in

g
 t

o
 p

ic
k

g
re

e
n
co

m
p

o
n

e
n
t"

)

[0
,
∞

]

(s
a
y
 "

ch
e
ck

in
g

 i
f

th
e
 h

u
m

a
n
 m

o
v
e
d

 r
e
d

 c
o
m

p
o
n
e
n

ts
 o

r
n

o
n
e
")

[0
,
∞

]

Fi
gu

re
7.

9:
T

he
po

lic
y

fo
rt

he
B

ax
te

rd
em

on
st

ra
tio

n.

45

DISTRIBUTION A: Distribution approved for public release.

is given in Figure 7.9. At every stage, the policy maps from the state of the world
to the action the robot should perform in the next time step, including querying
for further observations.

An intuition for understanding the policy would be to consider it as a sequence
of IF statements. However, the policy also allows reasoning over timing con-
straints, otherwise difficult to capture with conventional control structures such as
IF statements. Further, as shown by visual inspection, the actual policy for the
problem is too tedious to actually encode by hand, even for expert users. Using
our system, the user was able to describe the desired behavior in this case with
simple statements specifying the end location of the blocks, and the risk-aware
system automatically generated the policy. This allows ease of use by non-experts,
one of the desired features of a deployable risk-aware autonomous planning and
scheduling system.

7.2.1 Hybrid model learning in support of plan execution

When executing plans on real hardware, as in the manufacturing demonstration
presented in this section, one no longer has full knowledge about the state of the
environment, as it is usually the case in simulations. Instead, one must resort to
different types of sensors, along with models of the environment, in order to be
able to generate more human-understandable predicates such as “green block at
its location” or ”human has the red block on their hand”, which are used during
the planning and dispatching phases. In order to address this need, our group has
developed LCARS, a predicate estimator based on Qualitative Spatial Reason-
ing (QSR) [43] and Probabilistic Hybrid Automata (PHA) [44, 45] models of the
environment.

Similar to Section 7.1.1, one should ask the question of where one must ac-
quire these models in order to perform state estimation of the surrounding en-
vironment and its agents. Towards that effort, we have proposed in [8] the first
data-driven algorithm capable of learning PHA models directly from experimen-
tal data in the context of this project. The derivation of the algorithm is rather
involved, but we show in our work that such PHA models can greatly enhance the
performance of state estimators of complex systems, such as maneuvering aircraft
and engineered systems with switched dynamics. We are currently in the pro-
cess of applying the same techniques to LCARS, so that it can learn QSR models
directly from experimental data, with little to no human supervision.

46

DISTRIBUTION A: Distribution approved for public release.

7.3 Automatic risk-aware program generation with
RAO∗

In this section, we show how RAO∗ (Chapter 5) is able to automatically gener-
ate cRMPL programs implementing safe, optimal behavior from a CC-POMDP
model description. We demonstrate it in the aerial scout scenario depicted in
Figures 7.10 and 7.11 featuring a Cessna 172P aircraft in the open-source flight
simulator FlightGear.

The blue regions in Figure 7.10 represent areas of interest that might con-
tain targets of various levels of importance. The confidence about the presence
or absence of these targets in each one of the areas is given by a prior probabil-
ity distribution, which is part of the model given to RAO∗. The gray regions in
Figure 7.10 are no-fly zones that the aircraft should avoid, and we use chance
constraints to bound the probability of the aircraft inadvertently entering any one
of them. When the aircraft flies over a region, it will discover a target with high
probability should one be present, in which case it gains information reward. The
risk-bounded path planning problem in this demonstration is solved by pSulu, the
aforementioned chance-constrained path planner developed in our group.

Figure 7.10: Mission map on AutoFG, the autopilot used to fly the Cessna in
FlightGear. Blue regions are sites of interest that should be visited, time and risk
permitting. Gray areas are no-fly zones that the aircraft should avoid.

47

DISTRIBUTION A: Distribution approved for public release.

Figure 7.11: Screenshot of the FlightGear flight simulator, featuring a Cessna
172P aircraft.

Following the Enterprise architecture described in Chapter 2, cRMPL pro-
grams are compiled into a Probabilistic Temporal Plan Network format and dis-
patched by Pike. For illustration purposes, Figure 7.12 shows a pTPN correspond-
ing to an over-constrained situation where the aircraft only has enough resources
to visit a single site, while Figure 7.13 shows a snapshot of a cRMPL program gen-
erated by RAO∗ being dispatched by Pike within the Enterprise architecture. The
full video can be found at http://people.csail.mit.edu/psantana/
public/videos/AFOSR/.

Figure 7.12: pTPN representation of an cRMPL program with enough resources
to visit a single site.

48

DISTRIBUTION A: Distribution approved for public release.

Figure 7.13: Snapshot of a cRMPL program generated by RAO∗ being dispatched
by Pike within the Enterprise architecture.

A more detailed analysis of RAO∗’s computational report can be found in
Appendix A.

49

DISTRIBUTION A: Distribution approved for public release.

Chapter 8

Conclusions

This project developed Enterprise, a model-based programming and execution ar-
chitecture allowing safe autonomous behavior to be specified at a natural level of
abstraction, and contingent plans that are robust to environmental uncertainty to
be synthesized, verified, and dispatched in real-time while ensuring good perfor-
mance and hard guarantees on the risk of failure.

The chapters in this report and referenced publications describe our efforts
in developing formal methods to accomplish the goals set forth in the desiderata,
and our demonstrations, both in simulations and in real hardware, confirm that our
chance-constrained architecture meets the desired goals of the project. All goals
in our original Statement of Objectives were met according to plan or extended,
and are briefly summarized below for convenience:

Objective 1 : create a chance-constrained, reactive model-based programming
language (cRMPL) for specifying mission goals and risk levels.

Objective 2 : develop a risk-sensitive executive for cRMPL that uses its action
model to plan an execution that maximizes expected utility, while respecting
all chance constraints.

Objective 3 : validate cRMPL and Enterprise on a UAV mission (flight simulator
or indoor quadcopters), spacecraft mission (MIT Spheres spacecraft) or a
robot logistics mission.

The cRMPL language described in Chapter 3 and empirically demonstrated in
Chapter 7 allows human operators to specify safe desired behavior at a high level
of abstraction. It extends the previous version of RMPL by adding support to state

50

DISTRIBUTION A: Distribution approved for public release.

and temporal uncertainty, as well as safety guarantees in the form of chance con-
straints, while retaining RMPL’s original capability of representing complex hier-
archical compositions of plan episodes and their parallel coordination. Moreover,
the choice of implementing cRMPL as a module of the general-purpose Python
language allows it to be integrated within modern robotic frameworks, such as the
Robot Operating System (ROS). The latter was a key feature that enabled cRMPL
to control the Baxter robot in our robotic manufacturing demonstration in Chapter
7.

Chapters 4 through 6 and their accompanying peer-reviewed publications de-
scribe the different components required to accomplish the second objective. The
formal methods and algorithms developed provide the user of Enterprise with a
wide range of tools for checking contingent plans against safety specifications;
generating optimal and safe contingent plans from a model description of the
agent and its environment; and producing activity schedules that are robust not
only to uncertainties in the timing of different actions, but also to the need of co-
ordination of different autonomous agents under control. Our demonstrations in
Chapter 7 confirm that these pieces, when integrated together within the Enter-
prise framework, allow autonomous agents to exhibit safe and optimal behavior
while operating in partially-known environments. Moreover, we provide refer-
ences and intuitions related to our work in learning task and environmental mod-
els from experimental and simulated data, which was carried out in support of
enabling Enterprise to be demonstrated in real-world settings.

Concerning the experimental validation in the third objective, we demon-
strated Enterprise both in simulated UAV missions (FlightGear), as well as using
real quadcopters in the undergraduate course described in Chapter 2. We have
also shown its usefulness in a robotic manufacturing test bed purchased under this
contract. The Enterprise architecture is essentially unchanged among all sections
in Chapter 7, as well as Chapter 2: the planner and scheduler produce an execution
policy, which is dispatched in real-time by Pike. This architecture is thus trans-
ferable and shown to be easy to use by non-experts, having been demonstrated on
vastly different hardware and software.

51

DISTRIBUTION A: Distribution approved for public release.

Appendix A

RAO∗: an Algorithm for
Chance-Constrained POMDP’s

This appendix contains a detailed description and experimental evaluation of Risk-
aware AO∗ (RAO∗), which was introduced in Chapter 5 in the context of model-
based generation of cRMPL programs. It is currently under review for publication
at the 30th Conference on Artificial Intelligence (AAAI16).

52

DISTRIBUTION A: Distribution approved for public release.

RAO∗: an Algorithm for Chance-Constrained POMDP’s

Pedro Santana∗, Sylvie Thiébaux+, Brian Williams∗
∗Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, MERS

32 Vassar St. Room 32-224, Cambridge, MA 02139, {psantana,williams}@mit.edu
+The Australian National University & NICTA

Canberra ACT 0200, Australia, Sylvie.Thiebaux@anu.edu.au

Abstract

Autonomous agents operating in partially observable
stochastic environments often face the problem of op-
timizing expected performance while bounding the
risk of violating safety constraints. Such problems
can be modeled as chance-constrained POMDP’s (CC-
POMDP’s). Our first contribution is a systematic deriva-
tion of execution risk in POMDP domains, which im-
proves upon how chance constraints are handled in
the constrained POMDP literature. Second, we present
RAO∗, a heuristic forward search algorithm producing
optimal, deterministic, finite-horizon policies for CC-
POMDP’s. In addition to the utility heuristic, RAO∗

leverages an admissible execution risk heuristic to
quickly detect and prune overly-risky policy branches.
Third, we demonstrate the usefulness of RAO∗ in two
challenging domains of practical interest: power supply
restoration and autonomous science agents.

1 Introduction
Partially Observable Markov Decision Processes (POMDPs)
(Smallwood and Sondik 1973) have become one of the most
popular frameworks for optimal planning under actuator
and sensor uncertainty, where POMDP solvers find policies
that maximize some measure of expected utility (Kaelbling,
Littman, and Cassandra 1998; Silver and Veness 2010).

In many application domains, however, performance is
not enough. Critical missions in real-world scenarios require
agents to develop a keen sensitivity to risk, which needs
to be traded-off against utility. For instance, a search and
rescue UAV should maximize the value of the information
gathered, subject to safety constraints such as avoiding dan-
gerous areas and keeping sufficient battery levels. In these
domains, autonomous agents should seek to optimize ex-
pected reward while remaining safe by deliberately keeping
the probability of violating one or more constraints within
acceptable levels. A bound on the probability of violating
constraints is called a chance constraint (Birge and Lou-
veaux 1997). Unsurprisingly, attempting to model chance
constraints as negative rewards leads to models that are over-
sensitive to the particular penalty value chosen, and to poli-
cies that are overly risk-averse or overly risk-taking (Un-

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

durti and How 2010). Therefore, to accommodate the type
of scenarios exemplified above, new models and algorithms
for constrained MDPs have started to emerge, which handle
chance constraints explicitly.

Research has mostly focused on fully observable con-
strained MDPs, for which non-trivial theoretical properties
are known (Altman 1999; Feinberg and Shwarz 1995). Ex-
isting algorithms cover an interesting spectrum of chance
constraints over secondary objectives or even execution
paths, e.g., (Dolgov and Durfee 2005; Hou, Yeoh, and
Varakantham 2014; Teichteil-Königsbuch 2012). For con-
strained POMDPs (C-POMDP’s), the state of the art is less
mature. It includes a few suboptimal or approximate meth-
ods based on extensions of dynamic programming (Isom,
Meyn, and Braatz 2008), point-based value iteration (Kim
et al. 2011), approximate linear programming (Poupart et
al. 2015), or on-line search (Undurti and How 2010). More-
over, as we later show, the modeling of chance constraints
through unit costs in the C-POMDP literature has a number
of shortcomings.

Our first contribution is a systematic derivation of the ex-
ecution risk in POMDP domains, and how it can be used
to enforce different types of chance constraints. Second,
we present Risk-bounded AO∗ (RAO∗), a new algorithm
for solving chance-constrained POMDPs (CC-POMDPs)
that harnesses the power of heuristic forward search in
belief space (Washington 1996; Bonet and Geffner 2000;
Szer, Charpillet, and Zilberstein 2005; Bonet and Geffner
2009). Similar to AO∗ (Nilsson 1982), RAO∗ guides the
search towards promising policies w.r.t. reward using an ad-
missible heuristic. Third, RAO∗ leverages a second admis-
sible heuristic to derive and propagate execution risk upper
bounds at each search node, allowing it to identify and prune
overly risky paths as the search proceeds. Last, we demon-
strate the usefulness of RAO∗ in two risk-sensitive domains
of practical interest: automated power supply restoration
(PSR) and autonomous science agents (SA).

RAO∗ returns policies that maximize the expected cumu-
lative reward among the set of deterministic, finite-horizon
policies satisfying the chance constraints. Even though op-
timal policies for CC-(PO)MDPs may, in general, require
some limited amount of randomization (Altman 1999), we
follow Dolgov and Durfee (2005) in deliberately developing
an approach restricted to deterministic policies. This is mo-

DISTRIBUTION A: Distribution approved for public release.

tivated by the fact that users rarely trust stochastic decisions
when dealing with safety-critical applications.

The paper is organized as follows. Section 2 formulates
the type of CC-POMDPs we consider, and details how
RAO∗ computes execution risks and propagates risk bounds
forward. Next, Section 3 discusses shortcomings related to
the treatment of chance constraints in the C-POMDP liter-
ature. Section 4 presents the RAO∗ algorithm, followed by
our experiments in Section 5, and conclusions in Section 6.

2 Problem formulation
When the true state of the system is hidden, one can only
maintain a probability distribution (a.k.a. belief state) over
the possible states of the system at any given point in time.
Many applications in which an agent is trying to act under
uncertainty while optimizing some measure of performance
can be adequately framed as instances of Partially Observ-
able Markov Decision Processes (POMDP) (Smallwood and
Sondik 1973). Here, we focus on the case where there is a
finite policy execution horizon h, after which the system per-
forms a deterministic transition to an absorbing state.
Definition 1 (Finite-horizon POMDP). A FH-POMDP is a
tuple H =< S,A,O, T,O,R, b0, h >, where S is a set
of states; A is a set of actions; O is a set of observations;
T : S×A×S → R is a stochastic state transition function;
O : S × O → R is a stochastic observation function; R :
S×A → R is a reward function; b0 is the initial belief state;
and h is the execution horizon.

A solution to an FH-POMDP is a mapping π : B → A
from beliefs to actions, called a policy. An optimal policy π∗
is such that

π∗ = argπ maxE

[
h∑

t=0

R(st, at)
∣∣∣π
]
. (1)

In this work, we focus on the particular case of discrete S,
A, O, and deterministic optimal policies.

Let b̂k : S→[0, 1] denote the posterior belief state at the
k-th time step. A belief state at time k+ 1 that only incorpo-
rates information about the most recent action ak is called a
prior belief state and denoted by b̄(sk+1|ak). If, besides ak,
the belief state also incorporates knowledge from the most
recent observation ok+1, we call it a posterior belief state
and denote it by b̂(sk+1|ak, ok+1). These beliefs can be re-
cursively computed as follows:

b̄(sk+1|ak)= Pr(sk+1|b̂k, ak)=
∑

sk

T (sk, ak, sk+1)b̂(sk) (2)

b̂(sk+1|ak, ok+1)= Pr(sk+1|b̂k, ak, ok+1),

=
1

η
O(sk+1, ok+1)b̄(sk+1|ak), (3)

where T and O are from Definition 1, and

η = Pr(ok+1|ak, bk)=
∑

sk+1

O(sk+1, ok+1)b̄(sk+1|ak) (4)

is the probability of collecting some observation ok+1 after
executing action ak at a belief state bk.

In addition to optimizing performance, the next session
shows how one can enforce safety in FH-POMDPs by means
of chance constraints.

2.1 Computing risk
A chance constraint consists of a bound ∆ on the probability
(chance) of some event happening during policy execution.
Following (Ono, Kuwata, and Balaram 2012), we define this
event as a sequence of states s0:h = s0, s1, . . . , sh of a FH-
POMDP H violating one or more constraints in a set C. Let
p (for “path”) denote a sequence of states p = s0:h, and let
cv(p) ∈ {0, 1} be an indicator function such that cv(p) = 1
iff one or more states in p violate constraints in C. The latter
implies that states encompass all the information required
to evaluate constraints. With this notation, we can write the
chance constraint as

Ep (cv(p)|H,π) ≤ ∆, (5)

One should notice that we make no assumptions about con-
straint violations producing observable outcomes, such as
causing execution to halt.

Our approach for incorporating chance constraints into
FH-POMDP’s extends that of (Ono and Williams 2008;
Ono, Kuwata, and Balaram 2012) to partially observable
planning domains. We would like to be able to compute in-
creasingly better approximations of (5) with admissibility
guarantees, so as to be able to quickly detect policies that
are guaranteed to violate (5). For that purpose, let bk be a
belief state over sk, and Sak be a Bernoulli random variable
denoting whether the system has not violated any constraints
(is “safe”) at time k. We define

er(bk, C|π) = 1− Pr

(
h∧

i=k

Sai

∣∣∣∣∣ bk, π
)

(6)

as the execution risk of policy π, as measured from bk. The
probability term in (6) can be written as

Pr

(
h∧

i=k

Sai

∣∣∣∣∣ bk, π
)

= Pr

(
h∧

i=k+1

Sai

∣∣∣∣∣Sak, bk, π
)

Pr(Sak|bk, π), (7)

where Pr(Sak|bk, π) is the probability of the system not be-
ing in a constraint-violating path at the k-th time step. Since
bk is given, Pr(Sak|bk, π) can be computed as

Pr(Sak|bk, π)=1−
∑

sk∈S
b(sk)cv(sk, C)=1−rb(bk, C), (8)

where rb(bk, C) is called the risk at the k-th step. Note that
cv(sk, C) = 1 iff sk or any of its ancestor states violate con-
straints in C. In situations where the particular set of con-
straints C is not important, we will use the shorthand nota-
tion rb(bk) and er(bk|π). The second probability term in (7)
can be written as

Pr

(
h∧

i=k+1

Sai

∣∣∣∣∣Sak, bk, π
)

=
∑

bk+1

Pr

(
h∧

i=k+1

Sai

∣∣∣∣∣ bk+1, π

)
Pr(bk+1|Sak, bk, π),

=
∑

bk+1

(1− er(bk+1|π)) Pr(bk+1|Sak, bk, π). (9)

DISTRIBUTION A: Distribution approved for public release.

The summation in (9) is over belief states at time k + 1.
These, in turn, are determined by (3), with ak = π(bk)
and some corresponding observation ok+1. Therefore, we
have Pr(bk+1|Sak, bk, π) = Pr(ok+1|Sak, π(bk), bk). For
the purpose of computing the RHS of the last equation, it is
useful to define safe prior belief as

b̄sa(sk+1|ak) = Pr(sk+1|Sak, ak, bk),

=

∑
sk:cv(sk,C)=0 T (sk, ak, sk+1)b(sk)

1− rb(bk)
, (10)

With (10), we can define

Prsa(ok+1|ak, bk)= Pr(ok+1|Sak, ak, bk),

=
∑

sk+1

O(sk+1, ok+1)b̄sa(sk+1|ak), (11)

which is the distribution over observations at time k + 1,
assuming that the system was in a non-violating path at time
k. Combining (6), (8), (9), and (11), we get the recursion

er(bk|π) = rb(bk)

+ (1− rb(bk))
∑

ok+1

Prsa(ok+1|π(bk), bk)er(bk+1|π), (12)

which is key to RAO∗. If bk is terminal, (12) simplifies to
er(bk|π) = rb(bk). Note that (12) uses (11), rather than (4),
to compute execution risk. We can now use the execution
risk to express the chance constraint (5) in our definition of
a chance-constrained POMDP (CC-POMDP).
Definition 2 (Chance-constrained POMDP). A CC-
POMDP is a tuple < H, C,∆ >, where H is a FH-
POMDP; C is a set of constraints defined over S; and
∆ = [∆1, . . . ,∆q] is a vector of probabilities for q chance
constraints

er(b0, C
i|π) ≤ ∆i, Ci ∈ 2C , i = 1, 2, . . . , q. (13)

The chance constraint in (13) bounds the probability of
constraint violation over the whole policy execution. Alter-
native forms of chance constraints entailing safer behavior
are discussed in Section 2.3. Our approach for finding op-
timal, deterministic, chance-constrained solutions for CC-
POMDP’s in this setting is explained in Section 4.

2.2 Propagating risk bounds forward
The approach for computing risk in (12) does so “back-
wards”, i.e., risk propagation happens from terminal states to
the root of the search tree. However, since we propose com-
puting policies for chance-constrained POMDP’s by means
of heuristic forward search, one should seek to propagate the
risk bound in (13) forward so as to be able to quickly detect
that the current best policy is too risky.

Let 0 ≤ ∆̃k ≤ 1 be the bound on execution risk for node
bk. From (12), we get

rb(bk)+(1−rb(bk))
∑

ok+1

Prsa(ok+1|π(bk), bk)er(bk+1|π)≤∆̃k.

(14)

Let o′k+1 such that Prsa(o′k+1|π(bk), bk) 6= 0 be the ob-
servation associated with the child b′k+1 of bk. From (14),
we get

er(b′k+1|π) ≤ 1

Prsa(o′k+1|π(bk), bk)

(
∆̃k−rb(bk)

1−rb(bk)

−
∑

ok+1 6=o′k+1

Prsa(ok+1|π(bk), bk)er(bk+1|π)


 . (15)

The existence of (15) requires rb(bk) < 1 and
Prsa(o′k+1|π(bk), bk) 6= 0 whenever Pr(o′k+1|π(bk), bk) 6=
0. Lemma 1 shows that these conditions are equivalent.
Lemma 1. One observes Prsa(ok+1|π(bk), bk) = 0 and
Pr(ok+1|π(bk), bk) 6= 0 if, and only if, rb(bk) = 1.

Proof. ⇐ : if rb(bk) = 1, we conclude from (8) that
cv(sk, C) = 1, ∀sk. Hence, all elements in (10) and, con-
sequently, (11) will have probability 0.

⇒ : from Bayes’ rule, we have

Pr(Sak|ok+1, ak, bk)=
Prsa(ok+1|ak, bk)(1− rb(bk))

Pr(ok+1|ak, bk)
= 0

Hence, we conclude that Pr(¬Sak|ok+1, ak, bk) = 1, i.e.,
the system is guaranteed to be in a constraint-violating path
at time k, yielding rb(bk) = 1.

The execution risk of nodes whose parents have rb(bk) =
1 is irrelevant, as shown by (12). Therefore, it only makes
sense to propagate risk bounds in cases where rb(bk) < 1.

One difficulty associated with (15) is that it depends on
the execution risk of all siblings of b′k+1, which cannot be
computed exactly until terminal nodes are reached. There-
fore, one must approximate (15) in order to render it com-
putable during forward search.

We can easily define a necessary condition for feasi-
bility of a chance constraint at a search node by means
of an admissible execution risk heuristic her (bk+1|π) ≤
er(bk+1|π). Combining her (·) and (15) provides us with a
necessary condition

er(b′k+1|π) ≤ 1

Prsa(o′k+1|π(bk), bk)

(
∆̃k−rb(bk)

1−rb(bk)

−
∑

ok+1 6=o′k+1

Prsa(ok+1|π(bk), bk)her (bk+1|π)


 . (16)

Since her (bk+1|π) computes a lower bound on the ex-
ecution risk, we conclude that (16) gives an upper bound
for the true execution risk bound in (15). The simplest pos-
sible heuristic is her (bk+1|π) = 0, ∀bk+1, which assumes
that it is absolutely safe to continue executing policy π be-
yond bk. Moreover, from the non-negativity of the terms in
(12), we see that another possible choice of a lower bound
is her (bk+1|π) = rb(bk+1), which is guaranteed to be an
improvement over the previous heuristic, for it incorporates
additional information about the risk of failure at that belief
state. However, it is still a myopic risk estimate, given that it
ignores the execution risk for nodes beyond bk+1. All these
bounds can be compute forward, starting with ∆̃0 = ∆.

DISTRIBUTION A: Distribution approved for public release.

2.3 Enforcing safe behavior at all times
Enforcing (13) bounds the probability of constraint violation
over total policy executions, but (15) shows that unlikely
policy branches can be allowed risks close or equal to 1 if
that will help improve the objective, giving rise to a “dare-
devil” attitude. Since this might not be the desired risk-aware
behavior, a straightforward way of achieving higher levels of
safety is to depart from the chance constraints in (13) and,
instead, impose a set of chance constraints of the form

er(bk, C
i|π) ≤ ∆i, ∀i, bk s.t. bk is nonterminal. (17)

Intuitively, (17) tells the autonomous agent to “remain
safe at all times”, whereas the message conveyed by (13)
is “stay safe overall”. It should be clear that (17)⇒(13), so
(17) necessarily generates safer policies than (13), but also
more conservative in terms of utility. Another possibility is
to follow (Ono, Kuwata, and Balaram 2012) and impose

h∑

k=0

rb(bk, C
i) ≤ ∆i, ∀i, (18)

which is a sufficient condition for (13) based on Boole’s
inequality. One can show that (18)⇒(17), so enforcing (18)
will lead to policies that are at least as conservative as (17).

3 Relation to constrained POMDP’s
Alternative approaches for chance-constrained POMDP
planning have been presented in (Undurti and How 2010)
and (Poupart et al. 2015), where the authors propose al-
gorithms for solving constrained POMDP’s (C-POMDP’s).
They argue that chance constraints can be modeled within
the C-POMDP framework by assigning unit costs to states
violating constraints, 0 to others, and proceeding with cal-
culations as usual.

There are two main shortcomings associated with the use
of unit costs to deal with chance constraints. First, it only
yields correct measures of execution risk in the particular
case where constraint violations cause policy execution to
terminate. If that is not the case, incorrect probability values
can be attained, as shown in the simple example in Figure 1.
Second, assuming that constraint violations cause execution
to cease has a strong impact on belief state computations.
The key insight here is that assuming that constraint viola-
tions cause execution to halt provides the system with an
invaluable observation: at each non-terminal belief state, the
risk rb(bk, C) in (8) must be 0. The reason for that is simple:
(constraint violation ⇒ terminal belief) ⇔ (non-terminal
belief ⇒ no constraint violation).

Assuming that policy execution terminates at constraint
violations is reasonable when undesirable states are destruc-
tive, e.g., the agent is destroyed after crashing against an
obstacle. Nevertheless, it is rather limiting in terms of ex-
pressiveness, since there are application domains where un-
desirable states can be “benign”. For instance, in the power
supply restoration domain described in the experimental sec-
tion, connecting faults to generators is undesirable and we
want to limit the probability of this event. However, it does
not destroy the network. In fact, it might be the only way to
significantly reduce the uncertainty about the location of a

(a) Incorrect execution risks
computed using unit costs.

(b) Correct execution risks
computed according to (12).

Figure 1: Modeling chance constraints via unit costs
may yield incorrect results when constraint-violating states
(dashed outline) are not terminal. Numbers within states are
constraint violation probabilities. Numbers over arrows are
probabilities for a non-deterministic action.

load fault, therefore allowing for a larger amount of power
to be restored to the system.

4 Solving CC-POMDP’s through RAO∗

In this section, we introduce the Risk-bounded AO∗ algo-
rithm (RAO∗) for constructing risk-bounded policies for
CC-POMDP’s. RAO∗ is based on heuristic forward search
in the space of belief states. The motivation for this is sim-
ple: given an initial belief state and limited resources (in-
cluding time), the number of reachable belief states from a
set of initial conditions is usually a very small fraction of the
total number of possible belief states. Another reason is that
there might not be a clear concept of a “goal state”, which
makes it hard to perform goal regression.

Similar to AO∗ in fully observable domains, RAO∗ (Al-
gorithm 1) explores its search space of belief states from the
initial belief b0 by incrementally constructing a hypergraph
G called the explicit hypergraph. Each node in G represents
a belief state, and a hyperedge is a compact representation of
the process of taking an action and receiving any of a num-
ber of possible observations. Each node in G is associated
with the Q value

Q(bk, ak)=
∑

sk

R(sk, ak)b(sk)+
∑

ok+1

Pr(ok+1|ak, bk)Q∗(bk+1)

(19)

representing the expected, cumulative reward of taking ac-
tion ak at some belief state bk. The first term corresponds to
the expected current reward, while the second term is the ex-
pected reward obtained by following the optimal determin-
istic policy π∗, i.e., Q∗(bk+1) = Q(bk+1, π

∗(bk+1)). Given
an admissible estimate hQ(bk+1) ofQ∗(bk+1), we select ac-
tions for the current estimate π̂ of π∗ according to

π̂(bk) = arg max
ak

Q̂(bk, ak), (20)

where Q̂(bk, ak) is the same as (19) withQ∗(bk+1) replaced
by hQ(bk+1). The portion of G corresponding to the current
estimate π̂ of π∗ is called the greedy graph, for it uses an
admissible heuristic estimate hQ(bk, ak) of Q∗(bk+1) to ex-
plore the most promising areas of G first.

The most important differences between AO∗ and RAO∗
lie in Algorithms 2 and 3. First, since RAO∗ deals with par-
tially observable domains, node expansion in Algorithm 2

DISTRIBUTION A: Distribution approved for public release.

Algorithm 1 RAO∗

Input: CC-POMDP H , initial belief b0.
Output: Optimal policy π mapping beliefs to actions.
1: Explicit graph G and policy π initially consist of b0.
2: while π has some nonterminal leaf node do
3: n,G← expand-policy(G, π)
4: π← update-policy(n,G, π)
5: return π.

Algorithm 2 expand-policy
Input: Explicit graph G, policy π.
Output: Expanded explicit G′, expanded leaf node n.
1: G′← G, n← choose-promising-leaf(G, π)
2: for each action a available at n do
3: ch ← use (2), (3), (4) to expand children of (n, a).
4: ∀c ∈ ch , use (8), (11), (12), and (19) with admissible

heuristics to estimate Q∗ and er.
5: ∀c ∈ ch , use (16) to compute exec. risk bounds
6: if no c ∈ ch violates its risk bound then
7: G′← add hyperedge [(n, a)→ ch]

8: if no action added to n then mark n as terminal.
9: return G′, n.

involves full Bayesian prediction and update steps, as op-
posed to a simple branching using the state transition func-
tion T . In addition, RAO∗ leverages the heuristic estimates
of execution risk explained in Section 2.2 in order to perform
early pruning of actions that introduce child belief nodes that
are guaranteed to violate the chance constraint. The same
process is also observed during policy update in Algorithm
3, in which heuristic estimates of the execution risk are used
to prevent RAO∗ to keep choosing actions that are promis-
ing in terms of heuristic value, but can be proven to violate
the chance constraint at an early stage.

The proofs of soundness, completeness, and optimality
for RAO∗ are given in Lemma 2 and Theorem 1.

Lemma 2. Risk-based pruning of actions in Algorithms 2
(line 6) and 3 (line 7) is sound.

Proof. The RHS of (15) is the true execution risk bound for
er(b′k+1|π). The execution risk bound on the RHS of (16)
is an upper bound for the bound in (15), since we replace

Algorithm 3 update-policy
Input: Expanded n, explicit graph G, policy π.
Output: Updated policy π′.
1: Z ← set containing n and its ancestors reachable by π.
2: while Z 6= ∅ do
3: n← remove(Z) node n with no descendant in Z.
4: while there are actions to be chosen at n do
5: a ← next best action at n according to (20) satisfying

exec. risk bound.
6: Propagate execution risk bound of n to the children of

the hyperedge (n, a)
7: if no children violates its exec. risk bound then
8: π(n)← a; break
9: if no action was selected at n then mark n as terminal

er(bk+1|π) for the siblings of b′k+1 by admissible estimates
(lower bounds) her (bk+1|π). In the aforementioned prun-
ing steps, we compare her (b′k+1|π), a lower bound on the
true value er(b′k+1|π), to the upper bound (16). Verifying
her (b′k+1|π) > (16) is sufficient to establish er(b′k+1|π) >
(15), i.e., action a currently under consideration is guaran-
teed to violate the chance constraint.

Theorem 1. RAO∗ is complete and produces the optimal de-
terministic, finite-horizon policies meeting the chance con-
straints.

Proof. A CC-POMDP, as described in Definition 2, has a
finite number of policy branches, and Lemma 2 shows that
RAO∗ only prunes policy branches that are guaranteed not
to be part of any chance-constrained solution. Therefore, if
no chance-constrained policy exists, RAO∗ will eventually
return an empty policy.

Concerning the optimality of RAO∗ with respect to
the utility function, it follows from the admissibility of
hQ(bk, ak) in (20) and the optimality guarantee of AO∗.

5 Experiments
This section provides empirical evidence of the usefulness
and general applicability of CC-POMDP’s as modeling tool
for risk-sensitive applications, and shows how RAO∗ per-
forms when computing risk-bounded policies in two chal-
lenging domains of practical interest: power supply restora-
tion (PSR) (Thiébaux and Cordier 2001) and automated
planning for science agents (SA) (Benazera et al. 2005). All
models and RAO∗ were implemented in Python and ran on
an Intel Core i7-2630QM CPU with 8GB of RAM.

In the PSR domain (Thiébaux and Cordier 2001), the ob-
jective is to reconfigure a faulty power network by switch-
ing lines on or off so as to resupply as many customers
as possible. One of the safety constraints is to keep faults
isolated at all times, to avoid endangering people and en-
larging the set of areas left without power. However, fault
locations are hidden, and more information cannot be ob-
tained without taking the risk of resupplying a fault. There-
fore, the chance constraint is used to limit the probability
of connecting power generators to faulty buses. Our exper-
iments focused on the semi-rural network from (Thiébaux
and Cordier 2001), which was significantly beyond the reach
of (Bonet and Thiébaux 2003) even for single faults. In our
experiments, there were always circuit breakers at each gen-
erator, plus different numbers of additional circuit breakers
depending on the experiment. Observations correspond to
circuit breakers being open or closed, and actions to opening
and closing switches. The PSR domain is strongly combina-
torial, with |S| = 261; |A| = 68, |O| = 32.

Our SA domain is based on the planetary rover scenario
described in (Benazera et al. 2005). Starting from some ini-
tial position in a map with obstacles, the science agent may
visit four different sites on the map, each of which could
contain new discoveries with probability based on a prior
belief. If the agent visits a location that contains new dis-
coveries, it will find it with high probability. The agent’s
position is uncertain, so there is always a non-zero risk of

DISTRIBUTION A: Distribution approved for public release.

collision when the agent is traveling between locations. The
agent is required to finish its mission at a relay station, where
it can communicate with an orbiting satellite and transmit
its findings. Since the satellite moves, there is a limited time
window for the agent to gather as much information as pos-
sible and arrive at the relay station. Moreover, we assume the
duration of each traversal to be uncontrollable, but bounded.
In this domain, we use a single chance constraint to ensure
that the event “arrives at the relay location on time” happens
with probability at least 1 − ∆. The SA domain has size
|S| = 6144; |A| = 34, |O| = 10.

We evaluated the performance of RAO∗ in both domains
under various conditions, and the results are summarized in
Tables 1 (higher utility is better) and 2 (lower cost is bet-
ter). It is worthwhile to mention that constraint violations in
PSR do not cause execution to terminate, and the same is
true for scheduling violations in SA. The only type of ter-
minal constraint violation are collisions in SA, and RAO∗
makes proper use of this extra bit of information to update
its beliefs. Therefore, PSR and SA are examples of risk-
sensitive domains which can be appropriately modeled as
CC-POMDP’s, but not as C-POMDP’s with unit costs. The
heuristics used were straightforward: for the execution risk,
we used the admissible heuristic her(bk|π) = rb(bk) in both
domains. For Q values, the heuristic for each state in PSR
consisted in the final penalty incurred if only its faulty nodes
were not resupplied, while in SA it was the sum of the utili-
ties of all non-visited discoveries.

As expected, both tables show that increasing the maxi-
mum amount of risk ∆ allowed during execution can only
improve the policy’s objective. The improvement is not
monotonic, though. The impact of the chance constraint on
the objective is discontinuous on ∆ when only determinis-
tic policies are considered, since one cannot randomly select
between two actions in order to achieve a continuous inter-
polation between risk levels. Being able to compute increas-
ingly better approximations of a policy’s execution risk,
combined with forward propagation of risk bounds, also al-
low RAO∗ to converge faster by quickly pruning candidate
policies that are guaranteed to violate the chance constraint.
This can be clearly observed in Table 2 when we move from
∆ = 0.5 to ∆ = 1.0 (no chance constraint).

Another important aspect is the impact of sensor infor-
mation on the performance of RAO∗. Adding more sources
of sensing information increases the branching on the search
hypergraph used by RAO∗, so one could expect performance
to degrade. However, that is not necessarily the case, as
shown by the left and right numbers in the cells of Table
2. By adding more sensors to the power network, RAO∗
can more quickly reduce the size of its belief states, there-
fore leading to a reduced number of states evaluated during
search. Another benefit of reduced belief states is that RAO∗
can more effectively reroute energy in the network within
the given risk bound, leading to lower execution costs.

Finally, we wanted to investigate how well a C-POMDP
approach would perform in these domains relative to a CC-
POMDP. Following the literature, we made the additional
assumption that execution halts at all constraint violations,
and assigned unit terminal costs to those search nodes. Re-

sults on two example instances of PSR and SA domains were
the following: I) in SA, C-POMDP and CC-POMDP both at-
tained an utility of 29.454; II) in PSR, C-POMDP reached a
final cost of 53.330, while CC-POMDP attained 36.509. The
chance constraints were always identical for C-POMDP and
CC-POMDP. First, one should notice that both models had
the same performance in the SA domain, which is in agree-
ment with the claim that they coincide in the particular case
were all constraint violations are terminal. The same, how-
ever, clearly does not hold in the PSR domain, where the C-
POMDP model had significantly worse performance than its
corresponding CC-POMDP with the exact same parameters.
Assuming that constraint violations are terminal in order to
model them as costs greatly restricts the space of potential
solution policies in domains with non-destructive constraint
violations, leading to conservatism. A CC-POMDP formu-
lation, on the other hand, can potentially attain significantly
better performance while offering the same safety guarantee.

Window[s] ∆ Time[s] Nodes States Utility
20 0.05 1.30 1 32 0.000
30 0.01 1.32 1 32 0.000
30 0.05 49.35 83 578 29.168
40 0.002 9.92 15 164 21.958
40 0.01 44.86 75 551 29.433
40 0.05 38.79 65 443 29.433

100 0.002 95.23 127 1220 24.970
100 0.01 184.80 161 1247 29.454
100 0.05 174.90 151 1151 29.454

Table 1: SA results for various time windows and risk levels.

∆ Time[s] Nodes States Cost
0 0.025/0.013 1.57/1.29 5.86/2.71 45.0/30.0
.5 0.059/0.014 3.43/1.29 10.71/2.71 44.18/30.0
1 2.256/0.165 69.3/11.14 260.4/23.43 30.54/22.89
0 0.078/0.043 2.0/1.67 18.0/8.3 84.0/63.0
.5 0.157/0.014 3.0/1.29 27.0/2.71 84.0/30.0
1 32.78/0.28 248.7/5.67 1340/32.33 77.12/57.03
0 1.122/0.093 7.0/2.0 189.0/12.0 126.0/94.50
.5 0.613/0.26 4.5/4.5 121.5/34.5 126.0/94.50
1 123.9/51.36 481.5/480 8590.5/2648 117.6/80.89

Table 2: PSR results for various numbers of faults (#) and
risk levels. Top: avg. of 7 single faults. Middle: avg. of 3
double faults. Bottom: avg. of 2 triple faults. Left (right)
numbers correspond to 12 (16) network sensors.

6 Conclusions
We have presented RAO∗, an algorithm for optimally solv-
ing CC-POMDP’s. By combining the advantages of AO∗
in the belief space with forward propagation of risk upper
bounds, RAO∗ is able to solve challenging risk-sensitive
planning problems of practical interest and size. Our agenda
for future work includes generalizing the algorithm to move
away from the finite horizon setting, as well as more general
chance constraints, including temporal logic path constraints
(Teichteil-Königsbuch 2012).

DISTRIBUTION A: Distribution approved for public release.

References
Altman, E. 1999. Constrained Markov Decision Processes,
volume 7. CRC Press.
Benazera, E.; Brafman, R.; Meuleau, N.; Hansen, E. A.;
et al. 2005. Planning with continuous resources in stochas-
tic domains. In International Joint Conference on Artificial
Intelligence, volume 19, 1244.
Birge, J. R., and Louveaux, F. V. 1997. Introduction to
stochastic programming. Springer.
Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In Proceed-
ings of the Fifth International Conference on Artificial Intel-
ligence Planning Systems, 52–61.
Bonet, B., and Geffner, H. 2009. Solving pomdps: Rtdp-bel
vs. point-based algorithms. In Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence, 1641–
1646.
Bonet, B., and Thiébaux, S. 2003. Gpt meets psr. In
13th International Conference on Automated Planning and
Scheduling, 102–111.
Dolgov, D. A., and Durfee, E. H. 2005. Stationary de-
terministic policies for constrained mdps with multiple re-
wards, costs, and discount factors. In Proceedings of the
Nineteenth International Joint Conference on Artificial In-
telligence, 1326–1331.
Feinberg, E., and Shwarz, A. 1995. Constrained dis-
counted dynamic programming. Math. of Operations Re-
search 21:922–945.
Hou, P.; Yeoh, W.; and Varakantham, P. 2014. Revisiting
risk-sensitive mdps: New algorithms and results. In Pro-
ceedings of the Twenty-Fourth International Conference on
Automated Planning and Scheduling.
Isom, J. D.; Meyn, S. P.; and Braatz, R. D. 2008. Piece-
wise linear dynamic programming for constrained pomdps.
In Proceedings 23rd AAAI Conference on Artificial Intelli-
gence, 291–296.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial intelligence 101(1):99–134.
Kim, D.; Lee, J.; Kim, K.; and Poupart, P. 2011. Point-based
value iteration for constrained pomdps. In Proceedings of
the 22nd International Joint Conference on Artificial Intelli-
gence, 1968–1974.
Nilsson, N. J. 1982. Principles of artificial intelligence.
Springer.
Ono, M., and Williams, B. C. 2008. Iterative risk allocation:
A new approach to robust model predictive control with a
joint chance constraint. In Decision and Control, 2008. CDC
2008. 47th IEEE Conference on, 3427–3432. IEEE.
Ono, M.; Kuwata, Y.; and Balaram, J. 2012. Joint chance-
constrained dynamic programming. In CDC, 1915–1922.
Poupart, P.; Malhotra, A.; Pei, P.; Kim, K.-E.; Goh, B.; and
Bowling, M. 2015. Approximate linear programming for
constrained partially observable markov decision processes.

In Proceedings of the 29th AAAI Conference on Artificial
Intelligence.
Silver, D., and Veness, J. 2010. Monte-Carlo planning in
large POMDPs. In Advances in Neural Information Pro-
cessing Systems, 2164–2172.
Smallwood, R., and Sondik, E. 1973. The optimal control of
partially observable markov decision processes over a finite
horizon. Operations Research 21(5):107188.
Szer, D.; Charpillet, F.; and Zilberstein, S. 2005. MAA*:
A heuristic search algorithm for solving decentralized
POMDPs. In Proceedings of the Twenty-First Conference
on Uncertainty in Artificial Intelligence, 576–583.
Teichteil-Königsbuch, F. 2012. Path-Constrained Markov
Decision Processes: bridging the gap between probabilistic
model-checking and decision-theoretic planning. In ECAI,
744–749.
Thiébaux, S., and Cordier, M.-O. 2001. Supply restora-
tion in power distribution systems — a benchmark for plan-
ning under uncertainty. In Proc. 6th European Conference
on Planning (ECP), 85–95.
Undurti, A., and How, J. P. 2010. An online algorithm for
constrained pomdps. In IEEE International Conference on
Robotics and Automation, 3966–3973.
Washington, R. 1996. Incremental markov-model plan-
ning. In Tools with Artificial Intelligence, 1996., Pro-
ceedings Eighth IEEE International Conference on, 41–47.
IEEE.

DISTRIBUTION A: Distribution approved for public release.

Bibliography

[1] P. Santana and B. Williams. Chance-constrained consistency for probabilis-
tic temporal plan networks. In Proceedings of the 24th International Con-
ference on Automated Planning and Scheduling, 2014.

[2] Robert T Effinger. Risk-minimizing program execution in robotic domains.
PhD thesis, MIT, 2012.

[3] Masahiro Ono, Yoshiaki Kuwata, and J Balaram. Joint chance-constrained
dynamic programming. In CDC, pages 1915–1922, 2012.

[4] Andrew J. Wang and Brian C. Williams. Chance-constrained scheduling via
conflict-directed risk allocation. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, January 2015.

[5] Peng Yu, Cheng Fang, and Brian C. Williams. Resolving over-constrained
probabilistic temporal problems through chance constraint relaxation. In
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
Austin, TX, July 2015.

[6] Brian C Williams and Michel D Ingham. Model-based programming: Con-
trolling embedded systems by reasoning about hidden state. In Princi-
ples and Practice of Constraint Programming-CP 2002, pages 508–524.
Springer, 2002.

[7] Cheng Fang, Peng Yu, and Brian C Williams. Chance-constrained proba-
bilistic simple temporal problems. In Twenty-Eighth AAAI Conference on
Artificial Intelligence, 2014.

[8] Pedro Santana, Spencer Lane, Eric Timmons, Brian Williams, and Carlos
Forster. Learning hybrid models with guarded transitions. In Proceedings of
the 29th AAAI Conference on Artificial Intelligence, 2015.

60

DISTRIBUTION A: Distribution approved for public release.

[9] P. Santana and B. Williams. Dynamic execution of temporal plans with
sensing actions and bounded risk. In Proceedings of the 24th International
Joint Conference on Artificial Intelligence’s Doctoral Consortium, 2014.

[10] Steven J. Levine and Brian C. Williams. Concurrent plan recognition and
execution for human-robot teams. In ICAPS-14, 2014.

[11] David Wang and Brian C. Williams. tburton: A divide and conquer tem-
poral planner. In Proceedings of the Twenty-Ninth Conference on Artificial
Intelligence, Austin, Texas, January 2015.

[12] P. Kim, B. Williams, and M. Abramson. Executing reactive, model-based
programs through graph-based temporal planning. In IJCAI, 2001.

[13] Brian C Williams, Michel D Ingham, Seung H Chung, and Paul H Elliott.
Model-based programming of intelligent embedded systems and robotic
space explorers. Proceedings of the IEEE, 91(1):212–237, 2003.

[14] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks.
Artificial intelligence, 49(1):61–95, 1991.

[15] Thierry Vidal and Malik Ghallab. Dealing with uncertain durations in tem-
poral constraint networks dedicated to planning. In ECAI, pages 48–54,
1996.

[16] Ioannis Tsamardinos, T. Vidal, and M.E. Pollack. CTP: A new constraint-
based formalism for conditional, temporal planning. Constraints, 8(4):365–
388, 2003.

[17] Robert Effinger, B.C. Williams, Gerard Kelly, and Michael Sheehy. Dy-
namic Controllability of Temporally-flexible Reactive Programs. In Pro-
ceedings of the 19th International Conference on Automated Planning and
Scheduling (ICAPS 09), 2009.

[18] K Brent Venable, Michele Volpato, Bart Peintner, and Neil Yorke-Smith.
Weak and dynamic controllability of temporal problems with disjunctions
and uncertainty. In Workshop on Constraint Satisfaction Techniques for
Planning & Scheduling, pages 50–59, 2010.

[19] Luke Hunsberger, Roberto Posenato, and Carlo Combi. The dynamic
controllability of conditional stns with uncertainty. arXiv preprint
arXiv:1212.2005, 2012.

61

DISTRIBUTION A: Distribution approved for public release.

[20] J. Birge and F. Louveaux. Introduction to stochastic programming. Springer,
1997.

[21] Hélene Fargier, Jérôme Lang, Roger Martin-Clouaire, and Thomas Schiex.
A constraint satisfaction framework for decision under uncertainty. In Pro-
ceedings of the Eleventh conference on Uncertainty in artificial intelligence,
pages 167–174. Morgan Kaufmann Publishers Inc., 1995.

[22] Hélène Fargier, Jérôme Lang, and Thomas Schiex. Mixed constraint satis-
faction: A framework for decision problems under incomplete knowledge.
In Proceedings of the National Conference on Artificial Intelligence, pages
175–180, 1996.

[23] K. Stergiou and M. Koubarakis. Backtracking algorithms for disjunctions of
temporal constraints. Artificial Intelligence, 120(1):81–117, 2000.

[24] Esther Gelle and Mihaela Sabin. Solver framework for conditional constraint
satisfaction problems. In Proceeding of European Conference on Artificial
Intelligence (ECAI-06) Workshop on Configuration, pages 14–19, 2006.

[25] S Armagan Tarim, Suresh Manandhar, and Toby Walsh. Stochastic con-
straint programming: A scenario-based approach. Constraints, 11(1):53–80,
2006.

[26] Brian C Williams and Robert J Ragno. Conflict-directed A* and its
role in model-based embedded systems. Discrete Applied Mathematics,
155(12):1562–1595, 2007.

[27] R.D. Smallwood and E.J. Sondik. The optimal control of partially observ-
able markov decision processes over a finite horizon. Operations Research,
21(5):107188, 1973.

[28] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Plan-
ning and acting in partially observable stochastic domains. Artificial intelli-
gence, 101(1):99–134, 1998.

[29] David Silver and Joel Veness. Monte-Carlo planning in large POMDPs.
In Advances in Neural Information Processing Systems, pages 2164–2172,
2010.

62

DISTRIBUTION A: Distribution approved for public release.

[30] Aditya Undurti and Jonathan P. How. An online algorithm for constrained
pomdps. In IEEE International Conference on Robotics and Automation,
pages 3966–3973, 2010.

[31] Eitan Altman. Constrained Markov Decision Processes, volume 7. CRC
Press, 1999.

[32] Eugene Feinberg and Adam Shwarz. Constrained discounted dynamic pro-
gramming. Math. of Operations Research, 21:922–945, 1995.

[33] Dmitri A. Dolgov and Edmund H. Durfee. Stationary deterministic policies
for constrained mdps with multiple rewards, costs, and discount factors. In
Proceedings of the Nineteenth International Joint Conference on Artificial
Intelligence, pages 1326–1331, 2005.

[34] Ping Hou, William Yeoh, and Pradeep Varakantham. Revisiting risk-
sensitive mdps: New algorithms and results. In Proceedings of the Twenty-
Fourth International Conference on Automated Planning and Scheduling,
2014.

[35] Florent Teichteil-Königsbuch. Path-Constrained Markov Decision Pro-
cesses: bridging the gap between probabilistic model-checking and decision-
theoretic planning. In ECAI, pages 744–749, 2012.

[36] Joshua D. Isom, Sean P. Meyn, and Richard D. Braatz. Piecewise linear
dynamic programming for constrained pomdps. In Proceedings 23rd AAAI
Conference on Artificial Intelligence, pages 291–296, 2008.

[37] Dongho Kim, Jaesong Lee, Kee-Eung Kim, and Pascal Poupart. Point-based
value iteration for constrained pomdps. In Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence, pages 1968–1974, 2011.

[38] Pascal Poupart, Aarti Malhotra, Pei Pei, Kee-Eung Kim, Bongseok Goh,
and Michael Bowling. Approximate linear programming for constrained
partially observable markov decision processes. In Proceedings of the 29th
AAAI Conference on Artificial Intelligence, 2015.

[39] Nils J Nilsson. Principles of artificial intelligence. Springer, 1982.

[40] Thierry Vidal. Handling contingency in temporal constraint networks: from
consistency to controllabilities. Journal of Experimental & Theoretical Ar-
tificial Intelligence, 11(1):23–45, 1999.

63

DISTRIBUTION A: Distribution approved for public release.

[41] Masahiro Ono and Brian C Williams. Iterative risk allocation: A new ap-
proach to robust model predictive control with a joint chance constraint. In
Decision and Control, 2008. CDC 2008. 47th IEEE Conference on, pages
3427–3432. IEEE, 2008.

[42] Lars Blackmore, Masahiro Ono, Askar Bektassov, and Brian C Williams. A
probabilistic particle-control approximation of chance-constrained stochas-
tic predictive control. Robotics, IEEE Transactions on, 26(3):502–517,
2010.

[43] Anthony G. Cohn. The challenge of qualitative spatial reasoning. ACM
Computing Surveys (CSUR), 27(3):323–325, 1995.

[44] Michael W Hofbaur and Brian C Williams. Mode estimation of probabilistic
hybrid systems. In Hybrid Systems: Computation and Control, pages 253–
266. Springer, 2002.

[45] Michael W Hofbaur and Brian C Williams. Hybrid estimation of complex
systems. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Trans-
actions on, 34(5):2178–2191, 2004.

64

DISTRIBUTION A: Distribution approved for public release.

Response ID:5224 Data

1.

1. Report Type

Final Report

Primary Contact E-mail
Contact email if there is a problem with the report.

psantana@mit.edu

Primary Contact Phone Number
Contact phone number if there is a problem with the report

6175992994

Organization / Institution name

Massachusetts Institute of Technology

Grant/Contract Title
The full title of the funded effort.

Robust Coordination of Autonomous Systems through Risk-sensitive,
Model-based Programming and Execution

Grant/Contract Number
AFOSR assigned control number. It must begin with "FA9550" or "F49620" or "FA2386".

FA9550-12-1-0348

Principal Investigator Name
The full name of the principal investigator on the grant or contract.

Brian C. Williams

Program Manager
The AFOSR Program Manager currently assigned to the award

James Lawton

Reporting Period Start Date

09/01/2012

Reporting Period End Date

08/31/2015

Abstract

Unlike their human counterparts, most autonomous systems to date are not effective at characterizing or
bounding
mission risk. In this project, we enabled the development of risk-sensitive autonomous systems through
three main
contributions: first, we introduced cRMPL, an extension of RMPL where one can specify acceptable risk
levels for
different mission segments through the addition of chance constraints. Second, we extended the
continuous planner, used
by our executive, to generate and adapt plans that maximize expected utility within the risk bounds
specified by the
operators. Planning is performed through novel stochastic optimization algorithms that allocate user-
specified risk to
actions and constraints according to the benefit received. We evaluated the generality of this risk-sensitive
paradigm in
simulation and hardware, for autonomous air or space vehicles and humanoid logistics support robots.

DISTRIBUTION A: Distribution approved for public release.

Benefits include
increased number and complexity of vehicle missions for a fixed operational cost, increased robot safety
around humans;
a reduction in unacceptable mission failure or robot loss, and improved mission return within defined risk
levels.

Distribution Statement
This is block 12 on the SF298 form.

Distribution A - Approved for Public Release

Explanation for Distribution Statement
If this is not approved for public release, please provide a short explanation. E.g., contains proprietary information.

SF298 Form
Please attach your SF298 form. A blank SF298 can be found here. Please do not password protect or secure the PDF

The maximum file size for an SF298 is 50MB.

sf298.pdf

Upload the Report Document. File must be a PDF. Please do not password protect or secure the PDF . The
maximum file size for the Report Document is 50MB.

afosr_final_report_sf298.pdf

Upload a Report Document, if any. The maximum file size for the Report Document is 50MB.

Archival Publications (published) during reporting period:

Fang et al., “Chance-Constrained Probabilistic Simple Temporal Problems”

Santana & Williams,“Chance-Constrained Consistency for Probabilistic Temporal Plan Networks”

Santana et al., “Learning Hybrid Models with Guarded Transitions”

Santana & Williams, “Dynamic Execution of Temporal Plans with Sensing Actions and Bounded Risk”

Santana et al., “RAO ∗ : an Algorithm for Chance-Constrained POMDP’s”

Changes in research objectives (if any):

Change in AFOSR Program Manager, if any:

Extensions granted or milestones slipped, if any:

AFOSR LRIR Number

LRIR Title

Reporting Period

Laboratory Task Manager

Program Officer

Research Objectives

Technical Summary

Funding Summary by Cost Category (by FY, $K)

 Starting FY FY+1 FY+2

Salary

Equipment/Facilities

Supplies

Total

DISTRIBUTION A: Distribution approved for public release.

http://www.wpafb.af.mil/shared/media/document/AFD-070820-035.pdf
http://www.wpafb.af.mil/shared/media/document/AFD-070820-035.pdf
http://surveygizmoresponseuploads.s3.amazonaws.com/fileuploads/11364/363557/36-1f19045bde5826149268dbea542ab29b_sf298.pdf
http://surveygizmoresponseuploads.s3.amazonaws.com/fileuploads/11364/363557/243-47b2048564f569ae580ea36c178dd1d0_afosr_final_report_sf298.pdf

Report Document

Report Document - Text Analysis

Report Document - Text Analysis

Appendix Documents

2. Thank You

E-mail user

Sep 29, 2015 20:08:06 Success: Email Sent to: psantana@mit.edu

DISTRIBUTION A: Distribution approved for public release.

	DTIC_Title_Page_-_Robust_Coordination_of_Autonomous_Systems[1]
	FA9550-12-1-0348 SF298
	FA9550-12-1-0348 FINAL REPORT
	FA9550-12-1-0348 SURV

